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Objective: Evaluation of current clinical, experimental, genetic, and epidemiological data pertaining to the
role of androgens in mammary growth and neoplasia.

Design: Literature review.

Setting: National Institutes of Health.

Subject(s): Recent, basic, clinical, and epidemiological studies.

Intervention(s): None.

Main Outcome Measure(s): Effects of androgens on mammary epithelial proliferation and/or breast cancer
incidence.

Result(s): Experimental data derived from rodents and cell lines provide conflicting results that appear be
strain- and cell line–dependent. Epidemiologic studies have significant methodological limitations and
provide inconclusive results. The study of molecular defects involving androgenic pathways in breast cancer
is in its infancy. Clinical and nonhuman primate studies, however, suggest that androgens inhibit mammary
epithelial proliferation and breast growth and that conventional estrogen treatment suppresses endogenous
androgens.

Conclusion(s): Abundant clinical evidence suggests that androgens normally inhibit mammary epithelial
proliferation and breast growth. Suppression of androgens by conventional estrogen treatment may thus
enhance estrogenic breast stimulation and possibly breast cancer risk. Clinical trials to evaluate the impact of
combined estrogen and androgen hormone replacement regimens on mammary gland homeostasis are needed
to address this issue. (Fertil Steril� 2002;77(Suppl 4):S26–33. ©2002 by American Society for Reproductive
Medicine.)
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The importance of estrogens in stimulating
mammary epithelial proliferation and breast
growth and in increasing the risk for breast
cancer is well established. The normal ovary
produces relatively larger amounts of androgen
compared with estrogens (Es), however, and a
variety of clinical and experimental observa-
tions suggest that androgens normally inhibit
estrogenic effects on mammary growth. Both
androgen and E receptors are expressed in
mammary epithelium (1, 2), suggesting that the
steroid hormone effects may be integrated at
the level of the mammary epithelial cell.

Recent experimental data suggest that con-
ventional E treatment regimens, both as oral
contraceptives (OCs) (3) and as hormone “re-
placement therapy” (1), upset the normal E–an-
drogen balance and promote unopposed estro-

genic stimulation of mammary epithelial
proliferation and hence potentially breast can-
cer risk. This is because the suppression of
gonadotropins by exogenous E treatment re-
sults in globally reduced ovarian steroidogen-
esis, so both endogenous E and androgen pro-
duction are reduced, but only Es are provided
by the treatment regimens. Moreover, Es, par-
ticularly in oral form, stimulate the hepatic
production of sex hormone–binding globulin
(SHBG), which binds testosterone (T) with
high affinity, reducing androgen bioavailabil-
ity. As a result of these dual effects, both total
and bioavailable T levels are significantly re-
duced in women taking OCs or E replacement
for ovarian insufficiency (4).

This review of the literature was prompted
by our concern that the iatrogenic reduction in
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androgens in women on E therapy might contribute to un-
opposed estrogenic stimulation of the breast and potentially
augment breast cancer risk.

ESTROGENS, ANDROGENS, AND
BREAST DEVELOPMENT

Estrogens stimulate and androgens inhibit breast devel-
opment, independent of genetic sex. Pubertal rises in E
levels cause breast growth in girls (5) and frequently in boys
(transiently) (6). Estradiol levels are significantly higher in
girls with premature thelarche than in normal prepubertal
girls (7). Recently, an association between expression of a
high-activity isoform of the T-metabolizing CYP3A4 and
the early onset of thelarche has been documented, suggesting
that decreasing T levels may also trigger early breast growth
(8). Conversely, androgen excess caused by adrenal tumor or
hyperplasia suppresses normal breast development in girls,
despite apparently adequate E levels (9–11). In castrated
male-to-female transsexuals, feminizing E therapy stimu-
lates breast growth with full acinar and lobular formation
(12), and E-treated genetically male breast tissue exhibits
normal female histology. Estrogens taken to treat prostate
cancer also lead to breast development in men with sup-
pressed gonadal function and reduced T levels (13). Con-
versely, androgen use by female athletes and female-to-male
transsexuals leads to breast atrophy (14, 15).

Supporting the normal inhibitory role of endogenous an-
drogens on breast growth, androgen receptor (AR) blockade
with flutamide causes gynecomastia (16), and AR deletion or
inactivating mutation is associated with macromastia (and
increased breast cancer). Males may also develop gynecom-
astia when the E–androgen ratio is increased because of
decreased androgen production or increased aromatization
(6).

It has not been possible to identify specific E–androgen
ratios predictive of breast stimulation or inhibiting effects for
several reasons. Estradiol and T assays have traditionally not
been very sensitive in the lower ranges, and both hormones
bind to SHBG, so total values may not be as informative as
values of free or bioavailable hormone (4). Moreover, sin-
gle-hormone measurements may not be very informative
about tissue exposure over time. Both E2 and T levels vary
from hour to hour in response to diurnal rhythms, diet, stress,
and exercise (17, 18), so a single value may be inadequate to
assess true tissue exposure.

In addition, E2 and T may be synthesized locally in
peripheral tissues from circulating precursors such as DHEA
or DHEAS and androstenedione (reviewed in references 19,
20). The conjugated products of steroid metabolism find
their way into the circulation after peripheral action and
provide evidence as to the proportion of the precursor pools
of steroids used as androgen or E. Analyses of these metab-
olites by Labrie et al. (20) suggest that the major proportion

of androgen effectors in women are derived from such an
intracrine mode of action, which will not be detected by
assays of circulating T or dihydrotestosterone (DHT). Inter-
estingly, whereas circulating levels of T and DHT are 5- to
10-fold higher in men than in women, the abundance of
androgen metabolites is less than twofold higher in men,
suggesting that local tissue production and action of andro-
gens in women may be more significant than previously
suspected.

Pertinent to this review, the mammary gland is capable of
the synthesis of both E2 and T. All the steroidogenic en-
zymes necessary for the formation of androgens and Es from
steroid precursors—namely steroid sulfatase, 17�-hydroxys-
teroid dehydrogenases, 3�-hydroxysteroid dehydrogenases,
5�-reductases, and aromatase—have been reported in nor-
mal mammary tissues, breast cancer specimens, or cell lines
(21–24). Breast cancer cell lines and tissue specimens ex-
press the enzymes involved in DHT as well as in E2 synthe-
sis (21, 25–27). In a recent histochemical study, expression
of 5�-reductase was significantly correlated with AR expres-
sion and 17�-hydroxysteroid dehydrogenase (HSD) (5) and
3�-HSD immunoreactivities, and the abundance of this an-
drogenic molecular assembly was inversely correlated with
tumor size, histological grade, and proliferative index (21),
suggesting an inhibitory role for DHT in tumor growth.

ANDROGEN RECEPTOR

Androgen agonists such as T and DHT function by bind-
ing to the intracellular AR, which is a member of the nuclear
hormone receptor superfamily comprising classic DNA-
binding, hormone-binding, and activation domains (Fig. 1).
Androgen receptor expression is abundant in normal mam-
mary epithelium and in the majority of breast cancer speci-
mens and cell lines (1, 2, 28, 29). The AR is colocalized with
E and progesterone receptors in epithelial cells but is not
detected in mammary stroma or myoepithelium (1, 30, 31).

F I G U R E 1

Schematic design of the androgen receptor gene (top) and
protein (below). The polymorphic trinucleotide repeat site is
indicated at the left. Transactivating function (TAF), DNA-
binding (DBD), and ligand-binding domains (LBD) are la-
beled.
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The coexpression of ER and AR in mammary epithelial cells
suggests that the effects of E and androgen on mammary
epithelial proliferation are integrated within the mammary
epithelial cell. Interestingly, the AR gene is located on the X
chromosome with no corresponding allele on the Y, so it
functions solely as a single-copy gene, as shown by the
complete loss of androgen effect in XY individuals with an
inactivating mutation of the AR (32, 33).

The binding of T or DHT triggers a cascade of signaling
events, including phosphorylation and conformational
changes in the receptor, which dissociates from cytoplasmic
proteins and migrates to the cell nucleus. Ligand-activated
AR regulates gene expression by binding to androgen re-
sponse elements (AREs) located in a gene’s enhancer or
promoter region. As with other such receptors, the AR func-
tions in transcriptional regulation in concert with a host of
nuclear proteins, which may serve as coactivators or core-
pressors. Interestingly, the breast cancer 1 (BRCA1) gene
product has recently been identified as an AR coactivator
(34, 35). The BRCA1 protein binds to the AR and potenti-
ates AR-mediated effects, suggesting that BRCA1 mutations
may blunt androgen effects.

The AR has a highly polymorphic CAG repeat in exon 1
that encodes a polyglutamine stretch (Fig. 1). Longer poly-
glutamine repeat sequences are associated with decreased
AR potency in vitro (33). The significance of the CAG repeat
length for the risk of breast cancer remains unclear. One
study on 304 breast cancer patients carrying a BRCA1 mu-
tation demonstrated an earlier age of onset correlated with
longer AR CAG repeat sequences (36); however, other stud-
ies have not confirmed this finding in different populations
(37–40). A weak inverse association was noted between the
AR trinucleotide repeat length and markers of breast tumor
malignancy in another study (41). However, germline muta-
tions in the AR gene conferring variable degrees of androgen
insensitivity have been associated with the occurrence of
breast cancer in men (42). It should be emphasized that none
of these studies had sufficient statistical power to implicate
or exclude specific AR defects in breast cancer risk.

CIRCULATING ANDROGENS AND
BREAST CANCER RISK

Long-term treatment with Es increases the risk of breast
cancer in both males and females (43), with estrogenic
stimulation of mammary epithelial proliferation appearing to
be the primary cause for this effect, although additional
carcinogenic effects by E metabolites have been proposed
(44). The most widely accepted risk factor for breast cancer
is the cumulative dose of E that breast epithelium is exposed
to over time (45). Interestingly, however, it has been difficult
to correlate breast cancer risk with isolated serum E levels in
epidemiological studies, probably secondary to the problems
with use of single random hormone levels for the evaluation
of tissue-specific exposure discussed above.

Attempts to correlate adrenal precursor steroids with
breast cancer incidence have been relatively more successful
or at least consistent, perhaps reflecting the importance of
local tissue conversion as mentioned above. Many years ago,
reduced 17-ketosteroid excretion was noted in the urine of
premenopausal women with breast cancer (46) and subse-
quent studies have documented reduced levels of DHEA and
its sulfate, DHEAS, in the serum of premenopausal breast
cancer patients (47).

Several studies have found, however, that adrenal andro-
gens are increased in postmenopausal women with breast
cancer (reviewed in Adams [(48)]). One possible explanation
proposed for the divergence between premenopausal and
postmenopausal findings (49) is that one adrenal “androgen,”
androstenediol, also known as hermaphrodol, is a weak
agonist at the E receptor. In the presence of high E levels in
premenopausal women, androstenediol could have anti-es-
trogenic effects, whereas in the hypoestrogenic postmeno-
pausal milieu, the agonist effect may predominate (50–52).
This view remains speculative, however, and other possibil-
ities exist. For example, DHEA suppresses the development
of experimental mammary cancer in rats, apparently via
local AR-mediated effects (53–55). It is possible that the
high E environment in premenopausal women promotes
androgenic enzyme and AR expression by mammary tissue,
allowing androgenic effects by DHEA metabolites, whereas
the postmenopausal, E-deficient tissue microenvironment
may favor estrogenic effects.

In recent years, a number of epidemiological studies have
examined the correlation between circulating androgens
such as T and breast cancer risk. A major limitation of such
studies is the fact that the androgen assays used in these
studies were developed primarily to measure the higher
levels found in men and lack reliability in the low ranges
found in normal women (4). Moreover, T and androstenedi-
one levels demonstrate substantial variability from day to
day and even hour to hour, whereas most of the epidemio-
logical data is based on a single blood sample collected at
nonstandard times. Another problem in using serum T levels
to gauge androgenic effects at the tissue level is that most
circulating T is tightly bound to SHBG, whereas only the
unbound hormone is bioactive. Sex hormone–binding glob-
ulin, and thus total T levels, vary widely based on genetic,
metabolic, and endocrine influences (56), and it is now
accepted that measurements of free or bioavailable T predict
androgenic effects more accurately than do total T levels (4).
Finally, as discussed above, most androgenic activity in
women originates from the peripheral conversion of precur-
sors such as DHEA into androgens within the cells of target
tissues, and this activity will not be detected in the measure-
ment of circulating androgens.

In studies of incident breast cancer subjects (Table 1),
Secreto et al. (59, 60) found elevated T levels in premeno-
pausal and postmenopausal cases, but a more recent study
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did not find any association between T levels and postmeno-
pausal breast cancer cases postoperatively (64). In prospec-
tive epidemiological studies, age-adjusted mean values of
total and free T and E2 were significantly higher prediagnos-
tically in postmenopausal breast cancer case subjects com-
pared with case controls (58), and E2 and total T were
likewise elevated in other case–control studies of postmeno-
pausal breast cancer (57, 68).

In none of these studies, however, was it possible to
dissociate the risk associated with elevated E2 levels from
the androgen component, and because androgens are the
obligate precursors to E2 synthesis, this is a major confound-
ing factor in assessing the role of androgen, independent of
the known cancer-promoting effects of E.

Several other studies have found no association between
androgens and breast cancer (65–67). A recent study of 97
postmenopausal women with breast cancer found elevation
of all sex steroids in cancer cases but found an association
between free T and breast cancer relative risk that was
statistically independent of the E-associated risk (69). An-
other, similar study found elevated circulating T in some
cases, but after adjusting for free E2, no significant indepen-
dent correlation between T and breast cancer remained (70).

These observations indicate that it is very difficult to
separate potential direct effects of circulating T from its
potential to be aromatized into E2. It would be more inter-
esting to investigate levels of T and DHT metabolites in
these studies to assess tissue exposure to androgen more
directly.

As noted above, a single serum hormone determination
seems unlikely to be informative about a woman’s true
long-term exposure to that hormone or her specific risk of
developing breast cancer. Nor does there seem to be a
biologically plausible mechanism whereby androgens acting
as androgens could promote breast cancer, because virtually
all-clinical data suggest just the opposite.

If elevated androgen levels directly contribute to breast
cancer, then women with clinically evident long-term hy-
perandrogenism, for instance, in the cases of polycystic
ovary syndrome and congenital adrenal hyperplasia (CAH),
should experience increased rates of breast cancer, but they
do not (71). Moreover, androgen levels are chronically ele-
vated in men, who have a breast cancer risk that is �1% that
of women (72). This is despite the fact that E2 levels over the
lifespan are not very much lower in men than in women. In
fact, decreased androgen levels, for instance, as present in
Kleinefelter’s syndrome and other hypogonadal syndromes,
increase the risk of breast cancer in males. Epidemiological
studies in men indicate that low urinary androsterone and
serum free-T levels are related to early onset of breast
cancer, a much higher relapse rate, and a worse response to
endocrine therapy (63, 73).

ANDROGENS AND BREAST CANCER:
EXPERIMENTAL DATA

As previously noted, steroid hormones exert most actions
by binding and activating transcription factors, namely ste-
roid hormone receptors, which in turn regulate a large num-
ber of other genes. These other gene products mediate ad-
ditional events engaging additional targets and mechanisms.
In vitro studies in mammary carcinoma cells have shown
that androgen-induced growth factor exhibits oncogenic ac-
tion (74). Another androgen-induced factor, keratinocyte
growth factor (KGF), may serve as a paracrine growth factor
important in the control of proliferation of normal and neo-
plastic mammary epithelium (75) and may be added to the
increasing list of growth factors with potential roles in the
progression of breast carcinomas.

Androgens stimulate or inhibit the growth of breast can-
cer cells in vitro depending on the cell line and clone under
study (29). Androgens inhibit the proliferation of ZR-75–1
breast cancer cells via AR activation (76). Part of the growth

T A B L E 1

Epidemiological studies on the association between androgen levels and breast cancer risk.

Breast cancer
risk Investigators (reference no.) Comments

Increased Dorgan et al. (57) Serum levels of T are positively associated with postmenopausal cases
Berrino et al. (58) High serum T levels in postmenopausal women precede breast cancer occurrence
Secreto et al. (59) Elevated levels of T in postmenopausal cases
Secreto et al. (60) Elevated levels of T in premenopausal cases

Decreased Lee et al. (61) Androgen deficiency associated with premenopausal cases
Thomas et al. (62) Increased risk in men with androgen deficiency
Thomas et al. (63) Negative association between excretion rate of androgens and recurrence rate

No association Lipworth et al. (64) Serum T levels in postmenopausal women
Helzlsouer et al. (65) Serum androstenedione levels
Garland et al. (66) Serum levels of T and androstenedione in postmenopausal women
Wysowski et al. (67) Serum levels of T and androstenedione in premenopausal and postmenopausal cases

Dimitrakakis. Androgens and the mammary gland. Fertil Steril 2002.

FERTILITY & STERILITY� S29



inhibitory effect is caused by down-regulation of E receptor
expression, but additional inhibitory effects appear to be E
independent (77). Other studies suggest that adrenal andro-
gens stimulate the proliferation of breast cancer cells by
activation of the E receptor (78). Recent data indicate that
androgens can down-regulate bcl-2 proto-oncogene levels
via AR-mediated mechanism, thus promoting apoptosis in
human breast cancer cell lines (79, 80). Because a balance
between cell proliferation and apoptosis is critical for the
control of tissue growth, this finding provides a novel mech-
anism for the inhibitory effects of androgens on breast car-
cinomas.

DHEA prevents the development of mammary carcinoma
induced by 7,12-dimethylbenzanthracene in the rat, and this
protective effect is reversed by the anti-androgen flutamide,
suggesting that DHEA’s effect is mediated by its conversion
into T or DHT and activation of the AR (53, 54). A number
of groups have shown that the growth of human breast
cancer cell lines in nude mice and dimethylbenzanthracine-
induced mammary tumors in rats are inhibited by DHT as
well as by DHEA (55, 81). Indeed, androgens have been
successfully used for the treatment of breast cancer in
women, achieving an objective response comparable to that
of other hormonal therapies (82, 83). One group, however,
has found that androgens decrease the latency of E-induced
breast cancer in the Noble rat (84). Although ARs are not
found in the mammary stroma, this group detects increased
stromal fibroblast proliferation in the androgen-treated rats,
suggesting that systemic elevations of factors such as insu-
lin-like growth factor I may play a role in this model.

ANDROGENS AND HORMONE
REPLACEMENT THERAPY

Estrogens clearly induce and progestins clearly protect
against endometrial cancer (85). Both endogenous and ex-
ogenous E exposure is thought to contribute to increased
breast cancer risk. Since the introduction of combined OCs
40 years ago, many changes in the doses and biochemical
structure have taken place, and intense research has been
conducted to examine the possibility that OCs may increase
the risk of breast cancer.

Although many epidemiological studies in the past have
not linked OC use to breast cancer risk (86, 87), a number of
more recent studies have found an association, either overall
or especially in subgroups of women (88–90). A large meta-
analysis of the majority of previously published studies
calculated a small but significant increase in relative risk
(RR) of breast cancer (RR � 1.24) in current OC users (91).
However, because pill users are young, this represented a
very small increase in absolute risk. Also, in another recent
study, women taking OCs before 1975 (high-dose formula-
tions) who had a first-degree relative with breast cancer were
at particularly high risk for breast cancer (RR � 4.6) (92).

It is not yet known whether lower dose formulations are
associated with a similar increase in risk. Different formu-
lations of OCs containing different doses of Es and different
progestins with more or less potent androgenic effects make
it very difficult to compare and to reach some conclusions.
Also, the bulk of the currently available evidence supports a
causal relationship between the use of hormone replacement
therapy and breast cancer (93–96). Current, recent, and long-
term users of hormone replacement therapy are associated
with the highest risk. Also, the effect of concurrent progestin
use appears to further increase risk above that with Es alone
(95).

If androgens are protective against breast cancer, as many
of the studies reviewed here suggest, then conventional
hormone replacement therapy may promote breast cancer
not only by increasing E exposure but also by decreasing
endogenous androgen activity. Oral E therapy reduces free
androgens by stimulating hepatic production of SHBG and
by suppressing LH, thus inhibiting ovarian androgen pro-
duction (4). Thus, institution of pharmacological E therapy
at menopause may result in a drastic reduction in the T–E2

ratio, which is normally maintained at relatively high levels
throughout a woman’s lifespan (Fig. 2).

If androgens are indeed protective against E-induced
mammary proliferation, then the suppression of normal en-
dogenous androgen may be an adverse consequence of phar-
macological E therapy. Supporting this view, a recent study
found that a low-dose OC induced robust mammary epithe-
lial proliferation in rats but that addition of methyltestoster-
one to the therapy significantly suppressed the proliferation
(3). We have shown that addition of T to E therapy in

F I G U R E 2

Average E2 and T levels across the female lifespan, with
dashed lines predicting changes in hormone levels resulting
from pharmacological E therapy beginning at menopause.
–F– T (pg/ml), –E– E2 (pg/ml), --Œ-- T/ERT, --‚-- E/ERT.
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ovariectomized rhesus monkeys significantly inhibits E2-
induced mammary epithelial proliferation (Fig. 3) (1). In
addition, T treatment significantly reduced mammary epithe-
lial E receptor expression, suggesting a potential mechanism
for the growth inhibitory effect.

In a more recent study, we found that low physiological
doses of T produced serum levels in the midnormal range for
women as well as rhesus monkeys (e.g., �40 ng/dL) com-
pletely inhibits the pharmacological E therapy-induced in-
crease in mammary epithelial proliferation. Moreover, we
have recently found that treatment of intact-cycling monkeys
with the AR antagonist, flutamide, resulted in a significant
increase in mammary epithelial proliferation, adding to the
burden of evidence that endogenous androgens normally
limit mammary proliferation and hence also cancer risk.

These observations suggest that the addition of physio-
logical doses of androgen to OC and replacement E therapy

could protect the breast from “unopposed” estrogenic ef-
fects.

SUMMARY

This review focused on the role of androgens with respect
to breast growth and neoplasia. Measurement of circulating
sex steroids and their metabolites demonstrates that andro-
gen activity is normally quite abundant in healthy women
throughout the entire life cycle. Epidemiological studies
investigating T levels and breast cancer risk have major
theoretical and methodological limitations and do not pro-
vide any consensus. The molecular epidemiology of defects
in pathways involved in androgen synthesis and activity in
breast cancer holds great promise but is still in early stages.
Clinical observations and experimental data indicate that
androgens inhibit mammary growth and have been used with
success similar to that of tamoxifen to treat breast cancer.

F I G U R E 3

Mammary epithelial proliferation shown by Ki67 immunoreactivity in ovariectomized monkeys treated with vehicle (A), E2 (B),
E2 and P4 (C), tamoxifen (D), and E2 and T (E). Quantification of the Ki67 proliferation index is shown graphically in (F). Data
from Zhou et al. (1).
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Given these considerations, it is of concern that current
forms of E treatment in OCs and for ovarian failure result in
suppression of endogenous androgen activity. Thus, there is
need for studies on the efficacy of supplementing both oral
contraception and E replacement therapy with physiological
replacement androgen, perhaps in a nonaromatizable form,
to maintain the natural E–androgen ratios typical of normal
women.
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