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I. Introduction

HE STEROID hormone progesterone is a key component
in the complex regulation of normal female reproduc-
tive function. Broadly speaking, the major physiological roles
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of progesterone in the mammal are 1) in the uterus and ovary:
release of mature oocytes, facilitation of implantation, and
maintenance of pregnancy, by promotion of uterine growth
and suppression of myometrial contractility; 2) in the mam-
mary gland: lobular-alveolar development in preparation for
milk secretion and suppression of milk protein synthesis
before parturition; and 3) in the brain: mediation of signals
required for sexually responsive behavior. Recent evidence
also supports a role for progesterone in modulation of bone
mass (Table 1). The recent description of a mouse model
carrying a null mutation of the progesterone receptor (PR)
gene (1) has served to answer many of the complex questions
of progesterone action in vivo and has confirmed the impor-
tance and diversity of roles of progesterone in normal female
development and reproduction.

The pathways of progesterone action in target tissues are
not well defined and, in many respects, distinctions remain
to be made between the direct downstream targets of pro-
gesterone action and indirect consequences of progesterone
regulation. Furthermore, as the effects of progesterone are
mediated by its receptor and as PR is induced by estrogen in
most target tissues, the delineation of specific progesterone
effects, as distinct from those of estrogen, is similarly not
clear. A number of reviews have described the molecular
mechanisms of PR action (2-4), progesterone and proges-
terone antagonist effects on cellular proliferation (5, 6), and
regulation of the concentration of progesterone-responsive
proteins (7, 8). This review does not seek to replicate existing
reviews of the molecular biology of PR action but will pro-
vide an overview of the physiological action of progesterone
and its regulation of gene expression in target tissues.

II. Synthesis and Secretion of Progesterone

The ovary is the major site of synthesis and secretion of
estrogen and progesterone in the mammal and gives rise to
cyclical fluctuations in the levels of these hormones in the
circulation (reviewed in Ref. 9). Primary follicles play a dual
role in secreting both hormones as well as being responsible
for the release of the ovum during the normal cycle. Before
ovulation, granulosa cells in the follicle biosynthesize and
secrete estrogen. After follicle rupture and release of the
ovum, these granulosa cells mature to form the corpus lu-
teum, which is responsible for secretion of progesterone and
estrogen in the latter part of the cycle. In the human, if
fertilization does not occur within 1 to 2 days, the corpus
luteum will continue to enlarge for 10-12 days followed by
regression of the gland and concomitant cessation of estro-
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TaBLE 1. Physiological functions of progesterone
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Tissue

Function

Uterus/ovaries

Release of oocytes

Facilitation of implantation
Maintenance of pregnancy: via myometrial quietening
Stimulation of stromal regeneration: luteal phase of cycle

Mammary gland

Lobular alveolar development

Suppression of milk protein synthesis during pregnancy

Brain
Bone

Mediation of sexual responsiveness
Regulation of bone mass: prevention of bone loss

gen and progesterone release. If fertilization occurs, the cor-
pus luteum will continue to grow and function for the first
2 to 3 months of pregnancy. After this time it will slowly
regress as the placenta assumes the role of hormonal bio-
synthesis for the maintenance of pregnancy.

The release of progesterone from the corpus luteum is
influenced by a number of hormones. Primary among these
is LH, the activity of which is mediated via its intracellular
effects on cAMP (10, 11). FSH, PRL, prostaglandins, and
B-adrenergic agents also play a role in the control of pro-
gesterone secretion (9). Intermediates such as activin, which
is stimulated by FSH and inhibits progesterone secretion by
granulosa cells, and follistatin, which is synthesized by gran-
ulosa cells and is able to bind activin, contribute to a complex
pattern of regulation of progesterone secretion. At the time
of implantation of the blastocyst in the rat uterus, increased
progesterone synthesis is accompanied by induction of ovar-
ian follistatin gene expression, which appears to help in
maintaining progesterone secretion (12). However, it is not
clear whether follistatin is induced by progesterone to pre-
vent local inhibition of progesterone effects by activin in the
uterus or whether follistatin prevents down-regulation of
progesterone secretion from the corpus luteum.

Once released, progesterone is carried in the blood by
transcortin (corticosteroid-binding globulin) in many species
including humans. In the uterine fluid of the rabbit, between
days 3 and 12 of pregnancy, an additional progesterone
carrier, uteroglobin, is present. Uteroglobin has a postulated
role in protection of the embryo during pregnancy (discussed
in Section IV), by mechanisms that are still not clear (13, 14).
A specific progesterone binding plasma protein has also been
described in the pregnant guinea pig, which has significantly
higher affinity for progesterone than corticosteroid binding
globulin (15, 16) and is strongly induced from days 15 to 20
of pregnancy, remaining elevated until parturition at ap-
proximately day 65 (17). During this time it represents the
major progesterone-binding protein in the guinea pig and is
specifically synthesized by the placenta (17, 18). Synthesis of
this protein appears to be under progesterone control since
ovariectomy of pregnant animals, or parturition, causes a fall
in progesterone binding protein levels concomitant with de-
creased progesterone levels (19).

II1. The Progesterone Receptor

Progesterone effects are mediated by its nuclear receptor.
Receptor proteins that specifically bind progesterone, and
are induced by estrogen, were initially characterized in the
mammalian uterus and chick oviduct in the early 1970s (20—
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Fic. 1. The human PR ¢cDNA and PR A and B proteins. The arrows
indicate the translation start sites for PR B and PR A (27). DBD,
DNA-binding domain; HBD, hormone-binding domain.

23). O’Malley and co-workers showed that chick oviduct PR
was a dimer composed of two receptor proteins, PR A and
PR B, which each bound progesterone (24). In human breast
cancer the PR A and B proteins, characterized in vitro (25) and
in vivo (26), are detected with molecular masses of approx-
imately 81 kDa and 115 kDa, respectively. The two PR pro-
teins are encoded by a single gene in the human (Fig. 1),
under the control of distinct promoters, each of which gives
rise to a distinct subgroup of PR mRNA species (27). In
contrast, only one PR protein has been described in the rab-
bit, which has high homology to PR B in the human (28, 29).

PR is a member of a large family of ligand-activated nu-
clear transcription regulators, which includes receptors for
steroids, retinoids, thyroid hormones, and vitamin D. The
genes are characterized by organization into specific func-
tional domains that are conserved, to differing degrees, be-
tween species and family members. The most highly con-
served region between receptor genes is a region in the center
of the gene [Fig. 1, DBD (DNA-binding domain)] encoding
two “zinc finger” DNA-binding motifs (30). Binding of pro-
gestins to the carboxyl-terminal ligand-binding domain of
PR [Fig. 1, HBD (hormone-binding domain)] causes associ-
ation of the progestin-complexed PR dimer with specific
progestin response elements (PREs) in target genes, resulting
in modulation of transcription of those genes (reviewed in
Refs. 3 and 4).

Althoughboth PR A and PR B bind progestins and interact
with PREs, there is increasing evidence that they are func-
tionally different. In transfection studies the two proteins
have different abilities to activate progestin responsive pro-
moters; these differences are promoter- and cell-specific (31—
34), suggesting that cellular responsiveness to progestins
may be modulated via alterations in the ratio of PR A and B
expression. While PR B tends to be a stronger activator of
target genes, PR A can act as a dominant repressor of PR B
(33, 34), suggesting that high PR A expression may result in
reduced progestin responsiveness and that PR A and PR B
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may thus be, respectively, an activator and repressor of pro-
gestin action. The repressor role of PR A extends beyond that
on PR B, as PR A has been shown to diminish the response
of other hormone receptors such as the androgen, glucocor-
ticoid, mineralocorticoid, and estrogen receptors to their ap-
propriate ligands (35-37).

There are interspecies differences in the relative expression
of PR A and B in normal tissues. Approximately equimolar
expression of PR A and B is observed in chick oviduct (38)
and human uterus (39), and a similar ratio of expression is
seen in cultured human breast cancer cells (25). In the rodent,
PR A expression predominates over PR B in a ratio of 3:1 (40,
41). Alterations in the ratio of PR forms in the chick oviduct
during late winter, or in aged nonlaying animals, results in
a measurable decrease in PR functional activity (42, 43). In
human breast tumors, the ratio of expression of PR A and B
proteins differs markedly between patients (44). The biolog-
ical importance of these different ratios of PR expression has
not been extensively explored. Little is known of whether
relative PR A and B expression is modulated in vivo, although
in PR-positive breast cancer cells in culture PR B is prefer-
entially stimulated by estradiol, resulting in a significant
decrease in PR A to B ratio (45). Given the functional dif-
ferences between the two PR proteins demonstrated in vitro,
this suggests that the relative expression of PR A and B may
influence cellular responsiveness to progesterone.

A. PR expression and regulation

PR expression has been described in tissues known to be
progesterone responsive such as the uterus [mammalian en-
dometrium (46-51) and myometrium (51, 52)]; the ovary
[luteinizing granulosa cells and corpus luteum (53), preovu-
latory granulosa cells (54)]; and the chick oviduct (24) and
bursa of Fabricius (55). Specific progestin binding has been
described in other reproductive tissues such as testes (56) and
vaginal tissue (57). PR has been described in normal and
neoplastic breast (58—-61), and in the brain, in the pituitary,
ventromedial hypothalamus, and preoptic areas (62, 63). PR
has also been described in other tissues where the action of
progesterone is less well defined, including vascular endo-
thelium (64) and rat thymus (65). Specific progestin binding
hasbeen detected in rabbit lung (66), rat pancreatic islets (67),
and human osteoblast-like cells (68). A summary of the tis-
sues and cell types in which PR has been detected is shown
in Table 2.

The expression of PR, and therefore sensitivity to proges-
tins, is under the control of estrogen, which increases, and
progesterone, which decreases PR expression in most target
tissues. PR protein is increased during proestrus or by ex-
ogenous estrogen administration in the mammalian uterus
(52, 69-74). During the second half of the cycle, as serum
progesterone levels increase, total PR levels in the uterus
decrease, and this decrease can be brought on prematurely
by treatment with progesterone (73). Furthermore, proges-
terone treatment can oppose the estrogen induction of PR
(71). Although progesterone decreases total PR expression in
the uterus, down-regulation is not observed in all cell types.
During the follicular phase of the cycle, high levels of PR are
present in the nuclei of epithelial and stromal cells of the
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TaBLE 2. Tissues and cell types expressing PR
Tissue Cell type Reference
Uterus Endometrium (46-51)
Myometrium (51, 52)
Ovary Luteinizing granulosa (53)
Preovulatory granulosa (54)
Corpus luteum (53)
Reproductive tissues Testes (56)
Vagina (57)
Breast Normal and neoplastic (58-61)
Brain Pituitary (62, 63)
Ventromedial (62, 63)
Hypothalamus
Preoptic area (62, 63)
Other Vascular endothelium (64)
Thymus (65)
Pancreatic islets (67)
Osteoblast-like cells (68)
Lung (66)
Chicken Oviduct (24)
Bursa of Fabricius (55)

human endometrium and in myometrial smooth muscle
cells. In the mid- and late luteal phase, detection of PR in the
luminal and glandular epithelium declines markedly, to un-
detectable levels; on the other hand, stromal and myometrial
cells continue to express high levels of PR despite high cir-
culating progesterone and absent estrogen receptor (ER) (48,
49, 51). By contrast with the uterus, PR levels do not decrease
in the breast between the follicular and luteal phases (75-78).

IV. Progesterone Regulation of Gene Expression in
the Uterus, Ovary, and Chick Oviduct

Progesterone has a central role in reproduction, being in-
volved in ovulation, implantation, and pregnancy. Associ-
ated with this is the involvement of progesterone in regu-
lation of uterine function during the menstrual cycle, by
control of cyclical changes in proliferation and decidualiza-
tion. Progesterone is essential for the development of decid-
ual tissues, and if fertilization occurs, high circulating pro-
gesterone levels are important not only for facilitating
implantation, but also for maintaining pregnancy by stim-
ulating uterine growth and opposing the actions of factors
involved in myometrial contraction. The mechanisms un-
derlying these diverse and complex actions of progesterone
are yet to be fully defined, but it is clear that progesterone can
both stimulate and inhibit cell proliferation in the uterus,
depending on the cell type and physiological context, and
that it also plays a role in differentiated function. Some of the
functions influenced by progesterone include the stimulation
of glycogenesis (79, 80), cyclic nucleotide metabolism (8),
protein synthesis and secretion (8), and cell cycle regulation
(5), although the molecular mechanisms of these effects of
progesterone are not known. Intracellular proteins known to
be regulated by progesterone, and which therefore may be
involved in mediation of its effects, include ER, estrogen
metabolizing enzymes, a-fucosidase, and type II cAMP-de-
pendent kinase. Secreted proteins include enzymes for pro-
tein, carbohydrate and prostaglandin metabolism, hydro-
lases, phosphatases, prostaglandins, plasminogen activator,
and PRL (8).
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A. Progesterone effects on proliferation and decidualization
in the uterus during the menstrual cycle

Changes in proliferative activities of the glandular epithe-
lium and stromal elements of the human endometrium can
be correlated directly with circulating levels of estrogen and
progesterone (5), with estrogen stimulating proliferation and
progesterone opposing the effects of estrogen and causing
inhibition of proliferation. Potential mechanisms through
which progesterone opposes estrogen action during the men-
strual cycle and maintains the balance between the cyclical
influences of estrogen and progesterone are discussed in
Section VIII. The estrogen-stimulated follicular phase of the
cycle is associated with high proliferative activity in both the
epithelial and stromal cells (81). This is followed by a decline
in proliferation in the first half of the progesterone-domi-
nated luteal phase of the cycle. In the late luteal phase, while
proliferative activity remains low in the epithelium, a second
peak of proliferation, consistent with decidual changes, is
seen in the stromal elements, associated with high serum
levels of progesterone and presumably mediated by the con-
tinued expression of PR in those cells (48, 49, 51).

Specificity of the proliferative effects of progesterone in
decidualization may be due in part to cell type-specific ex-
pression and regulation of growth factor receptors and their
peptide ligands. Heparin binding epidermal growth factor
(EGF)-like growth factor mRNA is specifically induced by
progestins in uterine stromal cells (and is a mitogen in these
cells) but, in contrast, is repressed by progesterone treatment
in luminal and glandular epithelium (82).

PRL is likely to be involved in decidualization. PRL is
secreted by both the endometrial stroma (83) and myome-
trium (84) during the normal cycle in the human and appears
to be under the control of progesterone. Synthesis of PRL by
the stroma is greatest during the mid- to late luteal phase (83)
and can be induced, in vitro, in follicular phase endometrial
tissue by treatment with progesterone (85). Furthermore,
progesterone treatment of both follicular and luteal phase
tissue explants results in PRL induction, which coincides
with early morphological changes resembling the decidual-
ization of cells during early pregnancy (86). The progester-
one-mediated increase in PRL secretion from stromal cells is
the result of increased PRL mRNA expression and is additive
to the stimulatory effects of estrogen and relaxin (87). In
contrast, progesterone inhibits PRL mRNA transcription by
myometrial cells (84).

Progesterone may influence uterine proliferation and dif-
ferentiation during the menstrual cycle by regulation of pro-
teases or matrix proteins. Progestins suppress expression of
stromelysins in endometrial stromal cells and induce trans-
forming growth factor-B (TGEB) in these cells, resulting in
down-regulation of matrilysin expression in endometrial ep-
ithelium in stromal-epithelial cocultures (88, 89). Throm-
bospondin-1, an extracellular matrix glycoprotein that is ex-
pressed in vascular endothelium and inhibits angiogenesis,
is induced by progestins in endometrial stromal cells (90).
Furthermore, expression of thrombospondin-1 in endome-
trial stroma in vivo is correlated with stage of the menstrual
cycle, with strongest expression seen in the luteal phase,
suggesting that progesterone-mediated induction of throm-
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bospondin-1 influences cyclical regulation of vascular for-
mation and differentiation in this tissue.

B. Progesterone regulation of insulin-like growth factor
(IGF) pathways in the endometrium

The inhibitory effects of progesterone on estrogen-medi-
ated cell proliferation in the endometrium during the men-
strual cycle may be mediated by opposition of estrogen ac-
tion, as discussed in Section VII, but modulation of growth
factor pathways may also play a role. The proliferative effects
of IGFs are specifically controlled by progesterone, princi-
pally through regulation of IGF-binding protein I IGFBP-I).
In humans, IGFBP-I is expressed in a cyclical fashion in
endometrial stromal cells, with the highest expression seen
in the mid- to late luteal phase (91). IGFBP-I may act in a
paracrine fashion to prevent epithelial cell proliferation dur-
ing the late luteal phase, since progestins increase IGFBP-I
secretion from endometrial stromal cells both in vitro (92) and
in vivo (93). It is postulated that by binding to IGF-I, IGFBP-I
prevents binding of the growth factor to its receptor, result-
ing in decreased cellular responsiveness to IGF-I (91, 94).
Progesterone and IGFBP-I may also form an autocrine loop
controlling stromal cell proliferation at the end of the luteal
phase, since IGFBP-I treatment blocks the proliferative ef-
fects of both IGF-I and progestins on stromal cells in culture
(95). Alternatively, it has been postulated that IGFBP-I may
play a role in tissue remodeling toward the end of the cycle,
by binding a5p1-integrin, a specific cellular receptor for the
extracellular matrix protein fibronectin, and thus altering cell
motility (96, 97).

C. Control of ovulation

The presence of PR in most follicular cell types and in the
corpus luteum of the human ovary (98) suggests that the
process of ovulation is regulated by progesterone, an inter-
pretation confirmed by studies on PR null mice, which fail
to ovulate despite the presence of mature preovulatory fol-
licles (1). Relaxin is increased in the endometrium of non-
pregnant women during mid to late secretory phase and is
postulated to be progesterone-dependent (99). Studies with
rat granulosa cells in culture suggest that the increase in
relaxin may facilitate follicle rupture by increasing the se-
cretion of plasminogen activator, collagenase, proteogly-
canase, and B-glucuronidase (100). This suggestion is sup-
ported by reports in mice that treatment with epostane,
which inhibits 38-hydroxysteroid dehydrogenase, resulting
in decreased serum progesterone levels, inhibits the activities
of serine proteases, kallikrein, and plasminogen activator
and suppresses ovulation (101). Treatment with progester-
one relieves the suppression, just as treatment with the an-
tiprogestin RU 38486 suppresses ovulation (102), an inhibi-
tion associated with decreased protease activity (103),
implying that progesterone is responsible for their induction.

The formation of the corpus luteum represents a distinct
intraovarian process and appears to be progesterone-depen-
dent. Expression of PR is induced by LH in granulosa cells
of mature preovulatory follicles (104), and PR is detectable in
the primate corpus luteum despite high local progesterone
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concentrations (53, 105). Granulosa cells from mature pre-
ovulatory follicles of PR null mice show an inability to lu-
teinize correctly despite prolonged exposure to gonado-
tropins (1).

D. Implantation, uterine proliferation, and early pregnancy

Progesterone has a major role in the endometrium in prep-
aration for implantation of a fertilized ovum, and in many
species a decrease in circulating progesterone at the time of
fertilization is sufficient to delay implantation (106). Proges-
terone is important in promoting and maintaining implan-
tation through effects on both the maternal uterus and on the
developing blastocyst. Progesterone facilitates implantation
by stimulating the synthesis of enzymes responsible for lysis
of the zona pellucida. However, while progesterone is
known to be essential for implantation to occur, lysis of the
zona is not the crucial step in this process, suggesting that
other essential progesterone-mediated events are yet to be
described in the initiation of implantation (106). PRL plays a
role in implantation, and this is supported by recent obser-
vations that female mice that are PRL receptor null have
complete failure of embryonic implantation, leading to ste-
rility (107).

The induction of uterine cell proliferation in early preg-
nancy may be mediated by locally produced growth factors,
many of which are under progesterone control. Furthermore,
cell type-specific expression of growth factor receptors con-
trols cellular sensitivity to the autocrine/paracrine effects of
growth factors. Progesterone induction of growth factor se-
cretion from the luminal and glandular epithelium in the
mouse endometrium promotes proliferation of the EGF re-
ceptor-positive blastocyst trophectoderm to facilitate im-
plantation (108). In early pregnancy, EGF receptor mRNA is
also induced in the stroma of the maternal uterus by pro-
gesterone, but not in the luminal or glandular epithelium
(108). It has been suggested that the hemopoietic growth
factor, colony stimulating factor-I, exerts a paracrine influ-
ence on the growth and differentiation of the placental tro-
phoblast, and its secretion from the luminal and glandular
epithelium in the mouse is regulated by estrogen and pro-
gesterone (109). In the first 2 days of pregnancy in the mouse,
IGF-1 is secreted from the luminal and glandular epithelium
of the uterus under estrogen stimulation and may contribute
to effects on the blastocyst. After this time, secretion from the
epithelium declines and significantly greater synthesis and
secretion of IGF-I by the stroma are induced by progesterone,
resulting in increased proliferation and enlargement of the
uterus (110). It is postulated that increased growth factor
receptor expression in the stroma mediates the effects of EGF,
TGFa, and heparin-binding EGF-like growth factor from the
epithelium and IGF-I from the stroma, resulting in tissue-
specific stimulation of proliferation.

The molecular mechanisms of progesterone action during
pregnancy have been studied intensively in the rabbit uterus.
In particular, uteroglobin, which is transcriptionally regu-
lated by progesterone, has been well characterized at both the
cellular and molecular levels. Uteroglobin is expressed be-
tween days 3 and 12 of pregnancy in the rabbit uterus. It is
a dimer of two identical 8-kDa subunits and incorporates two
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Fell ions into its normal structure. Although it shows acid
phosphatase activity, its primary role has been suggested to
be the binding and transport of progesterone and its metab-
olite 5-a-pregnane-3,20-dione, which protects the blastocyst
from the high levels of circulating progesterone required for
maintenance of pregnancy (13). Alternatively, it has been
hypothesized that uteroglobin may protect the embryo from
maternal immune and inflammatory response during im-
plantation by contributing to the inhibition of phospholipase
A2 activity—a key point in the regulation of these response
pathways (14).

Expression of uteroglobin is almost exclusively confined to
the rabbit uterus, the exception being the lung where its
expression is constitutive and is not regulated by progester-
one (13). The uteroglobin gene is encoded by three exons
(111), and progesterone regulation of the gene is mediated
via binding of PR to specific regulatory elements in the 5'-
flanking region of the gene 2 to 3 kb upstream of the start of
transcription (112). Other progesterone-stimulated proteins
are also postulated to bind the uteroglobin gene in positions
more proximal to the promoter and to function as trans-
acting factors in progesterone regulation of the gene (113).
The binding of these proteins may be a mechanism by which
the strict tissue specificity of uteroglobin expression is main-
tained (114). Protein binding to the regulatory region of the
uteroglobin gene is also modulated by other pregnancy-
associated proteins. PRL, acting through its receptor, aug-
ments progesterone effects by increasing protein binding to
the uteroglobin promoter (115). Uteroglobin is expressed
only in the rabbit, although when transgenically expressed in
the mouse, the uteroglobin promoter is specifically regulated
by progesterone in the uterus (116). A homolog of uteroglo-
bin, the Clara cell 10-kDa protein (CC10), has been described
in the human. However, it is expressed primarily in the lung,
and the 5'-flanking regions of the gene, which correspond to
the PREs described in rabbit uteroglobin, are only partially
conserved, resulting in a lack of progesterone responsiveness
117).

E. Myometrial contractility

Progesterone suppresses myometrial contractility during
pregnancy, and a number of mechanisms exist whereby this
may be mediated, including progesterone effects on intra-
cellular calcium concentration, and levels of prostaglandins,
relaxin, and oxytocin. Increases in free intracellular calcium,
if unopposed, lead to myometrial contraction. Induction and
secretion of calcitonin, a peptide hormone involved in cal-
cium homeostasis, are postulated to lower free calcium levels
in the uterus, thereby preventing contraction (118). In the rat
uterus, expression of calcitonin is induced in glandular ep-
ithelial cells during early pregnancy. This effect can also be
achieved by progesterone treatment after estrogen priming,
suggesting that progesterone is primarily responsible (118).
It is also postulated that suppression of gene expression of
the calcium transporter calbindin-D9k prevents increases in
intracellular calcium and therefore contributes to prevention
of myometrial contraction. Calbindin-D9k mRNA expres-
sion in the pregnant rat uterus decreases significantly with
increasing endogenous progesterone levels, and this de-
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crease can be blocked by the antagonist RU 38486, suggesting
that the effect is PR-mediated (119). Furthermore, calbindin-
D9k levels in rat uterus are lowest during the progesterone-
dominated diestrus phase of the cycle, and estrogen induc-
tion of calbindin-D9k mRNA can be blocked by the proges-
terone agonist R5020 (120).

Progesterone inhibits prostaglandin synthesis and activity
in the pregnant sheep and therefore decreases myometrial
contractility. This inhibition is mediated by a number of
pathways that include blocking prostaglandin action, de-
creasing prostaglandin synthesis, and increasing its rate of
inactivation. Progesterone is thought to stimulate prosta-
glandin 15-dehydrogenase, which catalyzes prostaglandin
oxidation and results in inactivation (121). Progesterone op-
poses the effects of prostaglandins in the human uterus,
during pregnancy, and in the luteal phase of the cycle by
decreasing the levels of prostaglandins F2a and E in the
endometrium. Furthermore, estrogen stimulation of prosta-
glandin F2a expression in the luteal phase of the cycle in the
human endometrium is inhibited by progesterone (122). A
fall in progesterone levels at the end of pregnancy is asso-
ciated with increased prostaglandin synthase activity and
prostaglandin F2« production, leading to parturition (121).
The antiprogestin RU 38486 antagonizes all the actions of
progesterone on prostaglandin synthesis and catabolism and
stimulates prostaglandin production, resulting in its aborti-
facient effect (123).

Prostaglandin effects are mediated by prostaglandin re-
ceptors and indirectly via oxytocin receptors, proteins that
are also regulated by steroid hormones. Oxytocin receptors
are decreased by progesterone in uteri of ovariectomized
ewes (124). Oxytocin receptor levels are also inhibited in the
human uterus by blocking PGF2a production; conversely,
PGF2a induction of luteolysis results in decreased plasma
progesterone and a parallel increase of oxytocin receptors
(125). Angiotensin II receptors are increased in the rabbit
uterus by estrogen priming, resulting in increased contractile
sensitivity. This effect is blocked by progesterone treatment,
and progesterone alone markedly decreases angiotensin II
receptor expression (126). Similarly, atrial natriuretic factor
receptors are decreased by progesterone in the rat myome-
trium during pregnancy, resulting in refractoriness to the
tocolytic effects of atrial natriuretic factor on the uterus. It has
been postulated that this is mediated by abrogation of es-
trogen induction of these receptors (127).

During pregnancy the adrenergic system is involved in
myometrial quietening. Progesterone increases transcription
of B-adrenergic receptors in myometrium from late pregnant
rats, resulting in increased sensitivity to adrenergic agents
(128). Relaxin is also important in inhibiting spontaneous or
prostaglandin-induced myometrial contraction, contribut-
ing to the maintenance of implantation and early pregnancy
by increasing the collagen framework and distensibility of
the uterus (106). The corpus luteum, placenta, and decidua
are major relaxin-containing tissues during pregnancy, and
progesterone has been shown to be responsible for main-
taining relaxin levels (99).

In summary, progesterone has diverse roles in the uterus
and ovary at every stage of reproductive function (Table 1).
Modulation of cyclical proliferation during the menstrual
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cycle, regulation of ovulation, stromal growth and decidual
formation, promotion and maintenance of implantation,
uterine growth, and prevention of myometrial contractility
are all dependent upon specific gene regulation by proges-
terone. It is apparent that transcriptional regulation by pro-
gesterone is central to cell-specific growth regulation and
involves the coordination of growth factors and their recep-
tors in a complicated array of autocrine and paracrine effects.
Similarly, the local signals controlling prostaglandin effects
on myometrial contraction involve gene regulation by pro-
gesterone at many distinct levels, from regulation of oxytocin
signaling to control of prostaglandin synthesis and promo-
tion of calcium homeostasis. Current understanding of the
involvement of progesterone in these processes is fragmen-
tary, and the interrelationships between the many regulatory
steps largely remain to be described.

F. Chick oviduct

In the chick oviduct, progesterone induces the synthesis of
egg-white proteins, including ovalbumin, conalbumin, ly-
sozyme, and ovomucoid, and it is postulated that induction
is mediated by binding of PR to the genes encoding these
proteins (129). Hormonal induction of ovalbumin, in partic-
ular, has been well described in this system, and its cDNA
was one of the first to be fully sequenced (130, 131). The
ovalbumin gene 5'-flanking region contains several PR-bind-
ing regions, as well as regions that are postulated to bind
other proteins and thus influence progesterone and estrogen
regulation of the gene (129, 132, 133). Two regions within the
ovalbumin 5’'-flanking sequences mediate induction of a re-
porter gene by progesterone in transfection studies (31, 134).
Estrogen is also able to activate transcription through these
regions (31, 135) and in some cells acts additively with pro-
gesterone-bound PR A, but not PR B, to induce ovalbumin
gene transcription (31). It is not clear whether PR and ER act
through overlapping or distinct motifs in these regions. Es-
trogen action on the proximal steroid-responsive region of
the ovalbumin gene involves interaction of the fos-jun com-
plex with this region (136). It has been reported that pro-
gestins down-regulate c-jun transcription in estrogen-with-
drawn chick oviduct (137), although the implications of this
regulation for estrogen control of ovalbumin expression have
not been explored.

V. Progesterone Action in the Breast

The major developmental role of progesterone in the nor-
mal breast has been postulated to be the formation of lobular-
alveolar structures during pregnancy (138). This is supported
by the observation that mammary glands in PR null mice
develop ductal structures that are relatively similar to the
wild type but fail to form an interductal lobular-alveolar
structure upon exposure to estrogen and progesterone (1).
The influence of progesterone is likely to be proliferative in
this process, mediated by progesterone regulation of cell
cycle genes, growth factors, and growth factor receptors.
Progesterone also exerts a differentiating effect on the breast
through its role in lactation. The role of progesterone in
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differentiated function at other times has not been exten-
sively explored.

In comparison with the uterus, there is less known of the
mechanisms through which progesterone exerts its effect in
the breast, primarily because of the difficulty of obtaining
normal breast tissue and the relative paucity of models of
progesterone action in the normal breast. Breast cancer cells
have been used extensively as models to examine the role of
growth factors and growth factor receptors in mediating
progesterone effects. However, the limitation of studying
progesterone regulation of gene expression in malignant
cells, often derived from metastatic lesions, is the difficulty
in extrapolating results to the normal breast. An illustration
of this is the difference in progesterone effects on the PRL
receptor in breast cancer cells and normal mammary gland.
In T-47D and MCE-7 cells, progestins increase PRL receptor
levels (139), whereas in the normal mammary gland of pseu-
dopregnant rabbits, progestins antagonize PRL induction of
PRL receptors (140). Another example is the demonstrated
decrease in PR associated with exposure to progestins in
breast cancer cells (141-143), which contrasts with the per-
sistence of PR in the breast in the luteal phase of the cycle
(75-78).

A. Effect of progesterone on proliferation of the normal
breast

In addition to the developmental role of progesterone in
formation of lobular-alveolar structures, there is an in-
creasing body of in vivo evidence that supports a role for
progesterone in the induction of cyclical proliferation in
the breast. A number of studies have examined the effects
of cyclical hormonal changes during the menstrual cycle
on DNA synthesis in normal breast epithelium, and there
is general agreement between studies that an increase in
DNA synthesis is seen in the late luteal phase of the natural
cycle (144-148). The increase in DNA synthesis is consis-
tent with the observation of a cyclical increase in the num-
ber of epithelial mitoses, which peaks toward the end of
the luteal phase and is followed by an increase in apoptotic
activity (149, 150). These in vivo data are further supported
by the observation that high circulating progesterone lev-
els during pregnancy are responsible for inducing marked
lobular-alveolar development of the breast in preparation
for lactation (151).
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In contrast to this, a recent study examined proliferation
in breast tissue from patients who had received percuta-
neous estrogen and progesterone administration to the
breast before surgery (152). Epithelial mitoses and expres-
sion of proliferating cell nuclear antigen were lowest in
progesterone-treated samples, compared with both un-
treated controls and those receiving estrogen or estrogen
plus progesterone (152). However, these data should be
interpreted with caution: while this is clearly an in vivo
study, the duration of hormone administration, the per-
cutaneous route of administration, and the levels of hor-
mones applied were likely to result in tissue levels of
hormones different from those found during the men-
strual cycle, with attendant difficulty in extension of these
effects on proliferative parameters to those observed in the
breast during natural cycles.

In vitro studies of the involvement of progesterone in
breast epithelial proliferation have produced inconsistent
results (Table 3 and Ref. 5). Although estrogen consistently
increases proliferation of normal breast epithelium in vitro,
the progesterone effects either alone or combined with es-
trogen have been variable. Progesterone has been found to
increase DNA synthesis in normal mammary epithelium in
organ culture (153). However, progesterone either decreases,
or has no effect on, the proliferation of normal breast epi-
thelium explanted into nude mice (154, 155). Gompel et al
(156), who examined the effects of estrogen and the progestin
R5020 on the growth of cultured normal breast epithelial
cells, found that estrogen and progesterone had opposing
effects, estrogen increasing and progesterone decreasing cell
proliferation.

It is not known why the in vivo evidence in support of a
role for progesterone in cell proliferation in the breast is
difficult to reproduce in vitro, but a contributing factor may
be the limitations inherent in attempts to reproduce the phys-
iological environment of breast tissue, including paracrine
effects from surrounding stroma on epithelial cell prolifer-
ation. Further studies on determinants of cell proliferation in
the breast and the involvement of ovarian hormones in this
process are required to reconcile the discrepancies in the
published data on the role of progesterone in cell prolifer-
ation. The effects of estrogen and progesterone on prolifer-
ation in the breast, in the in vitro and in vivo models used, are
summarized in Table 3.

TaBLE 3. Effects of estrogen and progesterone on cell proliferation in the breast

Experimental model

Effect of hormone on proliferation

Progesterone Estrogen

In vivo

Follicular phase (estrogen-dominated) NA No increase

Luteal phase (progesterone-dominated) Increase NA

Pregnancy (high progesterone) Increase NA

Percutaneous hormone administration Decrease Increase
In vitro

DNA synthesis in organ culture Increase Increase

Explants in nude mice Decrease or no change Increase

Normal mammary cells in tissue culture Decrease Increase

Summary of hormone effects on proliferation in the breast in vivo and in vitro from Refs. 5, 144-156. NA, Not applicable.
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B. Progesterone regulation of genes associated with cell
cycle progression

Insights into the mechanisms underlying proliferative ef-
fects of progesterone in the breast have been obtained from
studying the effects of progestins on the cell cycle, primarily
in breast cancer cells in culture. A transient increase in cell
cycle progression is seen in PR-positive T-47D breast cancer
cells after administration of progesterone, which is correlated
with a short-lived induction of genes associated with cell
cycle progression (157-159). This can be demonstrated by
progestin treatment of cells that have been growth arrested
in G1 phase by serum deprivation and then released by
treatment with insulin, which is a strong mitogen in these
cells. Under these conditions, the cells are stimulated into a
single round of synchronized progression through the cell
cycle, an effect accompanied by transient increases in ex-
pression of cell cycle-regulatory genes, such as cyclins and
cyclin-dependent kinases, and of protooncogenes associated
with proliferative activity, such as c-myc and c-fos (158, 159).
The progestin induction of cell cycle progression reflects an
increased rate of progression of cells already in transit
through the cycle, rather than increased numbers of cells
entering S phase. Furthermore, while progestins potentiate
the insulin-mediated increase in cyclin D1 mRNA levels, the
timing of the cyclin D1 induction remains the same as seen
with insulin alone (159). Therefore, although the increases in
cyclin D1 and c-myc expression resulting from progestin
treatment can be blocked by RU 38468, demonstrating that
the progestin effects are PR-mediated, it is unlikely that cell
cycle genes are direct targets of progesterone action. The
temporal relationship between progestin regulation of cell
cycle progression and expression of cell cycle genes is sum-
marized schematically in Fig. 2.

In addition to stimulating expression of genes associated
with cell cycle progression, progestins may act by inhibiting
the expression of genes responsible for suppression of cell
growth. Expression of the tumor suppressor protein p53 is
decreased by progestins in T-47D breast cancer cells (160),
suggesting that progestins may stimulate proliferation of
these cells by removing the inhibitory effects of this protein.
Furthermore, loss of progestin responsiveness, resulting in
constitutive down-regulation of p53, may be a mechanism by
which increased, unregulated proliferation may occur.

C. Progesterone regulation of growth factors and growth
factor receptors in the breast

Growth factors and growth factor receptors have been
proposed as candidate mediators of progesterone effects on
cell proliferation. EGF mRNA (161) and EGF receptor protein
(162) and mRNA (163) are elevated by progestins in T-47D
breast cancer cells. Progestins also increase expression of
TGFa mRNA and modestly decrease that of TGF in T-47D
breast cancer cells (164). The effect is time- and dose-depen-
dent and can be inhibited by RU 38486. The implications of
these effects were at first unclear, since it is believed that EGF
and TGFa stimulate and TGFp inhibits the growth of breast
epithelial cells, and yet progesterone inhibits T-47D cell
growth. However, more recent data suggest that progestins

PHYSIOLOGICAL ACTION OF PROGESTERONE 509

Q

(]

(]

<

Y /\ control

(V2] \
progesterone

6 12 24

TGF-B

6 12 24
Time (h)

Fic. 2. Relationship between progestin regulation of cell cycle pro-
gression, cell cycle gene expression, and growth factor gene expression
in breast cancer cell lines. Schematic representation of progestin
regulation of cell cycle- related genes (middle panel) and growth factor
and growth factor receptor genes (lower panel), and comparison to
timing of progestin-induced cell cycle progression into S phase (upper
panel). EGF, Epidermal growth factor; EGFR, EGF receptor; TGFa,
transforming growth factor-«; TGF, transforming growth factor-g.
[Redrawn from information contained in Refs. 157-159, 161, 164, and
231].

have both stimulatory and inhibitory effects on breast cancer
cell growth (158), and that increased growth factor expres-
sion may be associated with the transient growth stimulation
of these cells by progestins, before growth inhibition. It has
also been suggested that overexpression of EGF and TGF«
may represent one mechanism by which breast cancer cells
acquire progestin resistance, as the development of resis-
tance by a subline of T-47D-5 cells coincided with elevated
levels of these factors (165). The above data must be inter-
preted with caution as in many cases regulation of mRNA
expression only has been demonstrated, and increased
mRNA levels may not necessarily lead to increased concen-
trations of biologically active signal or receptor. It is also
noteworthy that the timing of the modulation in growth
factor and growth factor receptor levels is not consistent with
these factors having a primary role in mediating progester-
one actions on cell proliferation: the increased expression of

Downloaded from edrv.endojournals.org on September 10, 2006


http://edrv.endojournals.org

510 GRAHAM AND CLARKE

growth factors and their receptors occurs after the changes
in cell cycle gene expression and is not associated closely
with the increase in S phase distribution. The timing of
growth factor gene regulation by progestins is summarized
schematically in Fig. 2.

Progesterone also increases insulin receptor expression in
both T-47D cells (166) and the subline T-47Dco (167). Al-
though progesterone alone inhibits growth of these cells,
cotreatment with progestin and insulin resulted in a syner-
gistic induction of T-47D cell growth, suggesting that the
progesterone-mediated increase in insulin receptor expres-
sion may result in greater sensitivity to the mitogenic effects
of insulin (166, 168). This is consistent with the ability of
progestins to potentiate insulin effects on synchronously
growing breast cancer cell cultures (159). These effects have
been postulated to have negative implications for the ther-
apeutic use of progestins, since growth-stimulatory effects
may be seen in breast tumors that express elevated levels of
insulin receptors and IGF receptors.

In contrast to the effects of progestins on EGF and insulin
receptor pathways, which are postulated to lead to increased
cell proliferation, progestins are generally believed to inhibit
the mitogenic effects of IGFs in breast cancer cells. This is in
keeping with the observations in the uterus (see Section I1V)
and may be a mechanism through which progesterone-me-
diated inhibition of cell proliferation in breast cancer cells
takes place. However, while in the uterus IGFBP1 is likely to
be involved in progesterone modulation of IGF action, in
breast cancer cells IGFBP1 is not widely expressed (169, 170).
Nevertheless, if IGFBP1 is expressed, it has been postulated
to inhibit the mitogenic effects of IGF-I in breast tumors (171,
172), similar to its action in the endometrium. Progestin
inhibition of the mitogenic effects of IGFs in breast cancer
cells is likely to occur by modulation of IGF receptor con-
centrations. While breast cancer cells express type I IGF re-
ceptors, few express IGF-I; in vivo this is thought to be con-
tributed by surrounding stromal cells, producing a paracrine
mitogenic effect on tumor growth (173). Progestins decrease
expression of IGF receptors in T-47D cells and increase IGF-
IT, which produces a further down-regulation of IGF receptor
(168, 174).

In summary, although there is evidence in support of a role
for progesterone in cell proliferation in the breast, the un-
derlying mechanisms are not clear, and the lack of appro-
priate models has slowed progress in this area. Much of the
data on mechanisms of progestin action in the breast are
derived from studies on breast cancer cells in culture: al-
though these provide important information, the validity of
extending this information to the normal breast has yet to be
fully tested. Modulation of the cell cycle is associated with
progesterone effects on cell proliferation: it remains to be
determined whether direct PR involvement or, more likely,
some other progesterone-regulated factor or factors under-
lies these effects. Furthermore, while progestins increase the
expression of EGF and its receptor, the timing of these effects
argues against their having a causative role in mediating
progestin effects on cell proliferation. However, although the
role of EGF pathways in mediating progesterone effects are
unclear, progestins have been shown consistently to inhibit
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the mitogenic activity of the IGF pathways in both breast and
uterus.

D. Markers of progestin action in the breast

Genes that are independently regulated by progestins in
the mammary gland and, therefore, may act as markers of
progestin responsiveness have been sought for their poten-
tial therapeutic or prognostic value in breast cancer. Two
such candidate genes are those encoding the enzymes fatty
acid synthetase and alkaline phosphatase.

Tissue-unspecific isoforms of alkaline phosphatase are de-
tectable in the normal breast and breast milk and are induced
by progestins in rat endometrial cells (175). In contrast, pla-
cental-type alkaline phosphatase activity is induced by es-
trogen but not progestins in the Ishikawa endometrial car-
cinoma cell line (176). Di Lorenzo and co-workers (177, 178)
reported that tissue-unspecific alkaline phosphatase activity
was induced by progestins in T47D breast cancer cells, and
that this induction was accompanied by the acquisition of a
differentiated, secretory phenotype. The increase in activity
was due to increased expression of alkaline phosphatase
mRNA, resulting in new alkaline phosphatase protein syn-
thesis (178) rather than increased activity of existing enzyme.
The progestin induction of alkaline phosphatase activity has
not been characterized in vivo, and the physiological signif-
icance of its activity, the type of isoforms expressed in breast
tumors, and the clinical significance of alkaline phosphatase
activity in breast cancer remain to be determined.

Fatty acid synthetase was cloned from the MCF-7 breast
cancer cell line by a subtractive hybridization strategy de-
signed to detect progestin-regulated genes (179). It was sub-
sequently shown (180) that the fatty acid synthetase protein
had also been identified previously by [*>S]methionine la-
beling as a progestin-responsive protein in both MCF-7 and
T-47D breast cancer cells (181). Progestins rapidly induce
fatty acid synthetase both transcriptionally and posttran-
scriptionally, with an increase in gene transcription detect-
able as early as 15 min after hormone treatment, and a con-
comitant stabilization of mRNA (182). Furthermore, the
progestin antagonist RU 38486 decreased basal transcription,
stabilized existing mRNA, and blocked progestin induction
of fatty acid synthetase, demonstrating that the effect was
PR-mediated. Fatty acid synthetase catalyzes the conversion
of acetyl-CoA and malonyl-CoA into fatty acid, and its in-
duction in breast cancer cells is accompanied by increased
lipid synthesis and the accumulation of lipid droplets (183).
The enzyme is postulated to be a marker of differentiation
and progestin responsiveness in breast cancer (184). As in the
case of alkaline phosphatase, the clinical significance of fatty
acid synthetase expression in breast cancer remains to be
demonstrated. Studies have revealed that fatty acid syn-
thetase mRNA levels in breast cancer tissues, measured by
in situ hybridization, are not correlated to ER or PR levels or
to node involvement. However, the enzyme may act as a
marker of proliferation in benign mastopathies, since its ex-
pression is higher in cysts and lobules than in ducts (184).
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E. Progesterone effects on lactation

In the normal breast, progesterone acts synergistically
with estrogen and PRL during pregnancy to prepare for
lactation by promoting lobuloalveolar development (185).
Progesterone also acts as an anti-PRL by preventing the syn-
thesis of milk proteins in mid- to late pregnancy (7) and by
inhibiting PRL secretion in women expressing abnormally
high circulating PRL (186). In pseudopregnant rabbits, pro-
gesterone antagonizes PRL induction of PRL receptors (140).
A sudden fall in circulating progesterone accompanies par-
turition and is associated with a concurrent increase in PRL
secretion and the onset of lactation.

a-Lactalbumin, part of the lactose synthetase complex, is
involved in lactogenesis after parturition and is induced by
PRL, insulin, and glucocorticoids. Glucocorticoid induction
of a-lactalbumin synthesis is specifically blocked by proges-
tins in midpregnant rat mammary gland explants (187). The
progesterone effect is seen at low concentrations, suggesting
that it is PR-mediated. Several putative glucocorticoid/pro-
gesterone response elements have been identified in the
a-lactalbumin gene (188), and PR is postulated to compete
with GR for binding of these elements, resulting in antago-
nism of glucocorticoid effects (187, 189). cAMP levels are
increased by progesterone during pregnancy and are also
able to block hormonal stimulation of a-lactalbumin (138). In
the final days of pregnancy and during lactation, a-lactal-
bumin synthesis increases significantly and is insensitive to
induction by glucocorticoids or suppression by progestins
(190). In the mouse, the lack of effect of progesterone on
a-lactalbumin during lactation is attributed to a specific sup-
pression of PR expression, which is refractory to stimulation
by exogenous estrogen (191). However, this does not explain
the observed loss of a-lactalbumin suppression during late
pregnancy, when PR remains high (190). Another major milk
protein, B-casein, is also under progesterone control. g-Ca-
sein mRNA expression is blocked by progesterone during
pregnancy (192), presumably through the binding of preg-
nancy-specific factors to the casein gene promoter (193). This
repressor effect is lost upon parturition, and B-casein mRNA
expression is greatly increased during lactation.

In summary, studies of the physiological actions of pro-
gesterone in the breast have been focused primarily on the
roles of this hormone in cell proliferation and milk protein
regulation (Table 1). While the involvement of progesterone
in the regulation of some milk protein genes has been defined
and there are data in vitro describing genes likely to be
implicated in control of cell proliferation, on the whole the
molecular action of progesterone in vivo in the breast is
poorly understood, there are few experimental models of
normal breast physiology available, and genes that are direct
targets of progesterone action have not been described in the
normal breast in vivo.

VI. Progesterone Effects in the Brain

Estrogen and progesterone control specific brain functions
involved in reproductive behavior. In guinea-pigs and rats,
sequential secretion of estrogen and progesterone during the
estrous cycle induces the sexually receptive lordosis re-
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sponse that coincides with ovulation. Induction of PR ex-
pression in the ventromedial hypothalamus and preoptic
area, by estrogen or by sequential exposure to estrogen and
progesterone, follows a time course that is correlated with the
observed increase in lordosis response (194-196). Further-
more, while sequential treatment with estrogen and proges-
terone initially results in an even greater induction of PR than
with estrogen alone (195, 196), receptor levels are later down-
regulated, and this is accompanied by a parallel decrease in
lordosis behavior (197, 198). A second progesterone treat-
ment is ineffective on both PR and behavior (198). These data
suggest the direct involvement of PR and progesterone in the
regulation of sexual behavior. This is supported by the find-
ing that sexual behavior can be abrogated by the direct de-
livery of antisense PR oligonucleotides to the cerebral ven-
tricle of the rat brain (199). Sequential administration of
estrogen and progesterone to these animals elicited a re-
duced or absent lordosis response, and the suppression was
dependent on the oligonucleotide dose. Furthermore, PR
was significantly lower in the hypothalamus of these ani-
mals. Similarly, PR null mice show a complete lack of lor-
dosis response after hormone administration (1), demon-
strating an absolute requirement for PR expression.

The mechanisms by which progesterone acts in the brain
are not fully defined; however, progesterone is known to
affect the expression of a number of proteins. Progesterone
stimulates y-aminobutyric acid (GABA) signaling pathways
in specific areas of the brain. Progesterone-mediated in-
creases in GABA, receptor binding sites in a number of
regions of the brain, including some areas where PR expres-
sion is low or absent, are postulated to contribute to stim-
ulation of lordosis behavior in rats and hamsters, suppres-
sion of aggressive behavior, and induction of the release of
GnRH (200-202). Part of this effect may be mediated by
direct interaction between 5a-reduced progesterone metab-
olites and GABA, receptor complexes in PR-negative re-
gions of the brain (Refs. 202 and 203 and references therein)
as well as by PR in areas such as the hypothalamus. Sequen-
tial estrogen and progesterone treatment, but not estrogen
alone, potentiates oxytocin induction of norepinephrine re-
lease from the ventromedial hypothalamus (204), which in
turn mediates hormone-dependent sexual behavior via nor-
adrenergic projections. Progesterone and estrogen may also
regulate behavior by affecting synthesis of POMC, the pre-
cursor of B-endorphin, in the ventromedial hypothalamus;
estrogen down-regulates the synthesis of this peptide, and
preliminary data suggest that progesterone prevents this
down-regulation (205). B-Endorphin decreases pituitary se-
cretion of LH and FSH. Adenylate cyclase activity and cAMP
levels are rapidly increased (206) and serotonin turnover is
down-regulated (207) by progesterone in the ventromedial
hypothalamus-preoptic area in rats, and both are implicated
in increased sexual receptivity.

Progesterone also affects gene expression in areas of the
brain not involved in sexual behavior. PR is detectable in the
cortex, hypothalamus, and pituitary within the first few days
of postnatal life in rats and in the cortex may play a role in
early learning patterns (63). Furthermore, progesterone treat-
ment increases B-adrenergic receptors in the rat cortex, pos-
tulated to be involved in modulation of emotional activity
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(208). A recent report suggested that the rat PR isoforms have
different functions in different areas of the brain. The study
found that PR A is more highly expressed in the hypothal-
amus-preoptic area, whereas PR B predominates in the cor-
tex (209). Rat PR A and B have been demonstrated in vitro to
be differently inducible by estrogen (210, 211), suggesting
that hormone regulation of PR expression may differ be-
tween the hypothalamus and cortex.

In summary, progesterone regulates signals in the brain
involving sexually responsive behavior. The most well de-
fined aspect of progesterone effects on this process are PR-
mediated effects in the hypothalamus and preoptic area.
Progesterone effects in the brain may also be mediated by
nonclassic mechanisms of action such as direct interaction of
progesterone metabolites with other receptors, such as
GABA , receptors. Furthermore, the relative expression of PR
A and B may be important in determining progesterone
effects in specific sites in the brain.

VII. Progesterone Effects on Bone

Expression of both ER and PR in normal human osteoblast-
like cells has been reported (68, 212), and several lines of
evidence support a role for steroid hormones in regulating
the expression and function of matrix proteins and metal-
loproteinases involved in bone remodeling and resorption.
Estrogen down-regulation of mRNA for bone matrix-asso-
ciated proteins has been reported to decrease bone resorption
and formation, resulting in a net slowing of the rate of loss
of bone mass (213, 214) and thereby supporting the use of
estrogen agonists in the prevention of osteoporosis in post-
menopausal women.

Progesterone may have a role in bone matrix regulation,
via its effect on metalloproteinases. As mentioned earlier,
progestins regulate proteinase activity in the uterus, sup-
pressing expression of stromelysins in endometrial stromal
cells and inducing TGFp, resulting in down-regulation of
matrilysin expression in the endometrial epithelium compo-
nent of stromal-epithelial cocultures (88, 89). The demon-
stration that a sequence contained in the 5'-flanking region
of the mouse gene encoding the bone matrix protein, os-
teonectin, can act as a PRE in vitro suggests that progestins
may also regulate this protein in vivo (215).

It has been suggested that progesterone regulation of bone
remodeling may also be indirectly facilitated by the ability of
progesterone to act as a ligand for the glucocorticoid recep-
tor. Glucocorticoids have been implicated in the process of
bone loss through their ability to block 1,25-(OH),-vitamin
D-induced osteocalcin synthesis (216) and to prevent attach-
ment of osteoblasts to matrix proteins, including osteonectin,
possibly through down-regulation of Bl-integrin and other
cell surface attachment factors (217). Glucocorticoids also
increase bone sialoprotein mRNA levels in rat osteosarcoma
cells, an effect that can be blocked by 1,25-(OH),-vitamin D
and has been postulated to contribute to acceleration in mat-
uration of preosteoblasts and ultimately to contribute to bone
loss (218). Progesterone has been postulated to antagonize
glucocorticoid-mediated effects in bone, resulting in abro-
gation of glucocorticoid-induced bone loss (219).
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In summary, although the data are preliminary at this
stage, progesterone appears to modulate bone remodeling,
resulting in protection against bone loss. This effect appears
to be mediated by PR expression in osteoblasts, as well as
through binding to glucocorticoid receptor and perhaps re-
ducing the influence of glucocorticoids.

VIIIL. Antiestrogen Action of Progesterone

Many of the effects of progesterone are thought to be due
to its ability to oppose the action of estrogen, particularly in
the uterus. Progesterone abrogates estrogen induction of
many of the known hormone-responsive genes, and this
effect is mediated by down-regulation of cytoplasmic and
nuclear ER protein concentrations, decreasing the active es-
trogen concentration (reviewed in Ref. 5) and antagonizing
the action of ER at the molecular level. The importance of this
balance between estrogen- and progesterone-mediated ef-
fects is demonstrated by the extensive proliferation of the
luminal and glandular epithelium, consistent with unop-
posed estrogen effects, in the uterus of ovariectomized PR
null mice (1).

A. Inhibition of ER expression

The mechanism of progesterone action on ER was initially
elucidated in the mammalian uterus. Uterine ER levels were
decreased by administration of progesterone to estrogen-
treated rats (220). Progesterone also antagonized estrogen
induction of ER in the rat myometrium and in whole rat
uterus (221, 222). Furthermore, administration of a synthetic
progestin, medroxyprogesterone acetate, to women under-
going curettage during the follicular phase of the menstrual
cycle resulted in decreased endometrial ER levels (223). A
decrease in ER in hamster decidual cells, due to progester-
one-mediated shortening of the ER protein half-life, sug-
gested direct destabilization of ER by progestins (224). The
progesterone-mediated decrease in ER protein has been
shown more recently in breast cancer cells to result from
decreased cellular ER mRNA levels (225), likely to reflect
decreased transcription of the ER gene, since the effect was
seen rapidly without shortening of the ER mRNA half-life
(226).

B. Progesterone inhibition of the molecular action of ER

As well as directly reducing ER concentration, progester-
one opposes ER-mediated gene-regulatory events, although
the molecular mechanisms of this antagonism are not clear.
In terms of this effect, the best defined model is the regulation
of PR itself. Progestins inhibit and estrogens stimulate rabbit
PR gene expression through the same region in the rabbit PR
promoter (29), although this effect is mediated without bind-
ing of PR to this region, suggesting that PR may sequester
transcription factors that are essential for estrogen action
(227). By contrast, progesterone and estrogen effects on hu-
man PR appear to be distinct, since estrogen primarily reg-
ulates the PR B promoter (45), whereas progestins regulate
both PR isoforms in breast cancer cells.

Other recent demonstrations that PR can inhibit transcrip-
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tional activation by ER of estrogen-responsive promoters
without binding to DNA support the view that PR may act
by sequestering transcription factors required for ER activity
(36, 37, 228, 229). However, the repressive effects of proges-
terone appear to be promoter- and cell-specific, and there is
considerable variability between reports. McDonnell and
Goldman (36) reported that PR A but not PR B, in the pres-
ence of either progesterone or antiprogestins, lessened the
ability of estrogen to induce an estrogen-responsive reporter
when the two constructs were transfected into CV-1 or
HS578T cells, but not HepG2 cells. PR A had similar anties-
trogenic effects on endogenous ER activation of a minimal
estrogen-responsive reporter in MCF-7 breast cancer cells in
the presence of RU 38486 (37). However, when the estrogen-
responsive region of the pS2 gene was used as a reporter in
MCE-7 cells, PR B and not PR A repressed activation of the
reporter by estrogen (229). The reason for this variability is
not yet known, but it is possible that specific accessory pro-
teins involved in transcriptional activation by ER and PR
differ between cell types or are expressed at different con-
centrations, resulting in variable effects. PR A has been dem-
onstrated to have similar repressive effects on other members
of the nuclear receptor family, including those for androgens,
mineralocorticoids, and glucocorticoids (35-37), although
the physiological significance of this observation remains to
be determined.

IX. Summary and Conclusion

Examination of the regulation of gene expression by pro-
gesterone has revealed the complexity of the diverse roles of
this hormone in the control of female reproductive function.
The actions of progesterone have been characterized in the
most detail in the uterus, where progesterone participates in
the cyclical control of proliferation and differentiation during
the menstrual cycle and plays a key role in pregnancy, being
involved in ovulation, implantation, uterine growth, and
maintenance of pregnancy. In the uterus, progesterone both
stimulates and inhibits cell proliferation. It promotes differ-
entiated function and, although the mechanisms underlying
progesterone opposition of estrogen action have been inves-
tigated, most of the mechanisms underlying the diverse roles
of progesterone in the uterus still require elucidation. In the
breast, progesterone is primarily responsible for develop-
ment of the lobular-alveolar structures during puberty and
pregnancy, but also plays a role in cyclical control of pro-
liferation during the menstrual cycle by mechanisms that are
poorly understood. In the brain, the effects of progesterone
on sexually receptive behavior have been established in an-
imal studies, but information on the role of progesterone in
the human brain is limited. Similarly, although progesterone
is likely to play a role in bone remodeling, there is a paucity
of information on this at present.

The molecular mechanisms of progesterone action have
been described only for a small number of well defined target
genes, examples being the uteroglobin and ovalbumin genes,
which have been studied in detail. However, progesterone is
clearly involved in the regulation of a considerable number
of genes about which little is known. Furthermore, the dis-
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tinction between direct and indirect targets of progesterone
action in cellular processes is largely yet to be made. By
separating gene-regulatory events, which are central to the
physiological effects of progesterone, from the secondary
consequences of progesterone action, it may be possible to
define the determinants of response to progesterone in nor-
mal and malignant cells.

X. Future Directions

Although significant progress has been made in under-
standing the physiological actions of progesterone in the
mammalian reproductive system and the molecular struc-
ture and function of PR, there are still marked gaps in knowl-
edge. Thereis a great deal to be learned about the biology and
hormone responsiveness of the normal breast, and the rel-
ative paucity of models has been a limitation in this regard.
Importantly, there is a need for more information on the
human breast, both normal and malignant, to provide base-
line information that will be beneficial in model develop-
ment, as well as in a better understanding of the physiology
of hormone action in the breast.

More information is needed on the significance of PR A
and PR B expression. While PR involvement in regulating a
host of physiological events has been described, there is little
known of the individual roles of the PR proteins PR A and
PR B in mediating these effects. While in vitro work suggests
that these proteins have different functions and that PR A
may be a repressor of PR B in particular, and more generally
of other members of the nuclear receptor family, there are no
data on the relative activities of PR A and B in vivo. Fur-
thermore, it is not known whether PR A and B are expressed
in all target tissues, and within target tissues whether cells
express one or both of these proteins. The relative expression
of the two PR proteins has not been examined to date in most
tissues of the reproductive system. Addressing these ques-
tions, which rely on single cell analysis, poses significant
technical challenges that will necessitate continued devel-
opment and refinement of immunohistochemical, in situ, and
other methodologies.

The mechanism of PR action may also depend on an array
of other proteins, such as the recently described nuclear
receptor coactivators and corepressors. Nuclear receptors
interact with coregulatory proteins, which may function as
intermediates in transcription (230). If they play a role in the
transcriptional activity of PR, it is likely that they will be
expressed in progesterone target tissues, although this has
yet to be described. The role of coregulatory proteins in
progesterone action needs further investigation to clarify
whether progesterone regulates coregulatory protein expres-
sion and whether tissue levels of coregulatory proteins play
a role in modulation of progesterone action.

Progesterone has both proliferative and differentiating ac-
tions, and identification of genes whose transcription is di-
rectly modulated by progesterone is an essential first step in
understanding progesterone effects on these complex pro-
cesses. The number of described genes that are directly mod-
ulated by progesterone is small, and many of the effects of
progesterone described in this review are likely to be indirect
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consequences of the action of as yet undescribed gene prod-
ucts. New information on genes directly regulated by pro-
gesterone is urgently required, and techniques such as dif-
ferential display PCR and similar approaches by which to
identify progesterone-regulated transcripts, despite their
limitations, are likely to yield important new knowledge in
the near future.
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