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ABSTRACT There is now considerable evidence that
using a combination of synthetic progestins and estro-
gens in hormone replacement therapy (HRT) increases
the risk of breast cancer compared with estrogen alone.
Furthermore, the World Health Organization has re-
cently cited combination contraceptives, which contain
synthetic progestins, as potentially carcinogenic to hu-
mans, particularly for increased breast cancer risk.
Given the above observations and the current trend
toward progestin-only contraception, it is important
that we have a comprehensive understanding of how
progestins act in the millions of women worldwide who
regularly take these medications. While synthetic pro-
gestins, such as medroxyprogesterone acetate (MPA),
which are currently used in both HRT and oral contra-
ceptives were designed to act exclusively through the
progesterone receptor, it is clear from both clinical and
experimental settings that their effects may be medi-
ated, in part, by binding to the androgen receptor (AR).
Disruption of androgen action by synthetic progestins
may have serious deleterious side effects in the breast,
where the balance between estrogen signaling and
androgen signaling plays a critical role in breast ho-
meostasis. Here, we review the role of androgen signal-
ing in the normal breast and in breast cancer and
present new data demonstrating that androgen receptor
function can be perturbed by low doses of MPA, similar
to doses achieved in serum of women taking HRT. We
propose that the observed excess of breast malignan-
cies associated with combined HRT may be explained,
in part, by synthetic progestins such as MPA acting as
endocrine disruptors to negate the protective effects of
androgen signaling in the breast. Understanding the
role of androgen signaling in the breast and how this is
modulated by synthetic progestins is necessary to de-
termine how combined HRT alters breast cancer risk,
and to inform the development of optimal preventive
and treatment strategies for this disease.—Birrell,
S. N., Butler, L. M., Harris, J. M., Buchanan, G., and
Tilley, W. D. Disruption of androgen receptor signaling
by synthetic progestins may increase risk of developing
breast cancer. FASEB J. 21, XXXX–XXXX (2007)
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Recent events have necessitated evaluation of syn-
thetic progestin use in female reproductive medicine.
The World Health Organization recently cited hor-
monal contraceptives, of which the majority contain
synthetic progestins, as contributing to increased breast
cancer risk (1). This recommendation is consistent with
earlier studies on HRT, including the Women’s Health
Initiative (WHI) (2), which reported that the use of
synthetic progestins in combination HRT is associated
with increased relative risk of breast cancer compared
with estrogen alone (RR�1.24; 95% confidence inter-
val 1.01–1.54). Whereas recent commentaries have
highlighted a number of shortcomings in the design
and analysis of the WHI trial (3–5), the weight of
evidence from multiple observational studies, random-
ized controlled trials, and several recent meta-analyses
(6–8), support the view that women taking estrogen
and progestin-based HRT have an increased incidence
of breast cancer. It is currently unclear whether HRT
acts to increase breast cancer risk per se, or accelerates
the development of preexisting tumors (9). Neverthe-
less, given that more than 25% of postmenopausal
women who require HRT use a combination of estro-
gen and synthetic progestins, it is important to under-
stand the actions of progestins in the breast at a
molecular level. Whereas synthetic progestins are gen-
erally considered to act via progesterone receptor (PR)-
mediated pathways in female reproductive tissues (10),
we have demonstrated that treatment failure with the
progestin medroxyprogesterone acetate (MPA) in ad-
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vanced breast cancer is associated with reduced levels of
androgen receptors (AR) or impaired AR function (11)
and that MPA binds to the AR with an affinity compa-
rable to the native androgenic ligand, 5�-dihydrotes-
tosterone (DHT) (12). In addition, the observation
that MPA interacts with the glucocorticoid receptor
(GR) to increase levels of the metastasis suppressor
gene, nm-23, in human breast cancer (13) provides
further evidence for extensive crosstalk by progestins
with non-PR signaling pathways in breast cancer cells.
In this review, we will summarize the literature on the
interactions between synthetic progestins, such as MPA
and the AR, and discuss potential functional conse-
quences of this interaction in breast tissue and the
implications for breast cancer risk.

Estrogens, progestins, and breast cancer

Since the demonstration over 100 yr ago that removal
of the ovaries could suppress the growth of breast
cancer, exposure to the female sex hormone estradiol
has been implicated in the development of breast
cancer, potentially by modulating epithelial cell prolif-
eration (14). Breast epithelial cells depend on a func-
tional estrogen-signaling axis for growth and survival,
and analysis of estrogen receptor knockout mice has
revealed that the structural and functional develop-
ment of the mammary gland is primarily controlled by
one of the cellular targets for estrogens, the estrogen
receptor alpha (ER�) (15). Current hormonal thera-
pies for advanced breast cancer exploit this depen-
dence of breast epithelial cells on estradiol for growth
and survival. The most commonly used hormonal treat-
ments either block the synthesis of estrogens or the
action of estrogens at the level of ER� (16, 17). In
addition to estrogens, progesterone also contributes to
normal lobular-alveolar development in the breast and
may influence the formation of breast cancer (17, 18).
Progesterone induces the estradiol-primed endome-
trium into a secretory phase, and consequently syn-
thetic progestins, which are more stable and have
higher bioavailability than progesterone, have been
used extensively in hormone replacement therapy
(HRT) since the early 1980s to reduce the risk of
uterine cancers associated with unopposed estrogen
action. As synthetic progestins have diverse tissue-spe-
cific effects, which in many cases are distinct from those
of the native hormone progesterone due to differences
in dose, structure, specificity, and metabolism, exten-
sive progestin-induced sequellae are well documented
in women (19–22).

Synthetic progestins are classified into two main
categories: 1) the more progesterone-like pregnane
derivatives (e.g., medroxyprogesterone acetate, MPA)
and 2) the androstane and estrane derivatives (e.g.,
norethisterone). In addition to binding to the two
predominant PR isoforms, PR-A and PR-B, to recapitu-
late many of the direct effects of progesterone (17, 18),
synthetic progestins bind to glucocorticoid and andro-

gen receptors (12, 20) and interact with nongenomic
signaling pathways (23), to initiate a diverse range of
biological effects.

The most widely prescribed progestin in the United
States is medroxyprogesterone acetate (MPA). Since
MPA was first formulated in 1958, it has been used in
many therapeutic situations, including advanced breast
cancer, as a long-acting contraceptive, and in combined
HRT. Much of our understanding of MPA comes from
its use in advanced breast cancer, where high doses are
required to obtain a clinical response. This is in con-
trast to long-acting contraception and HRT, in which
lower depot or oral doses are used. In the latter
context, multiple studies have demonstrated that estro-
gen and MPA combination, but not estrogen alone,
results in increased breast epithelial cell proliferation
in humans and other primates and increased mammo-
graphic breast density, which is an established risk
factor for breast cancer (24–27).

In Europe, MPA use is much less common than in
the United States, and testosterone-like progestins (e.g.,
levonorgestrel) or oral micronized progesterone are
the preferred progestins. The testosterone-like class of
progestins has, like MPA, been associated with in-
creased breast cancer risk in observational and random-
ized controlled trials of HRT (28, 29). Two studies have
compared the effects of the type of progestin used in
combined HRT with oral estradiol and have found that
systemic administration of progesterone-like and testos-
terone-like derivatives were both associated with in-
creased breast cancer risk (30, 31). Notably, in France
the majority of women taking combined HRT receive
oral micronized progesterone rather than a synthetic
progestin. In two French studies- the E3N-EPIC cohort
of 54,548 women and a smaller study of 3175 women,
no significant increase in breast cancer risk due to HRT
use with micronized progesterone was observed com-
pared with untreated women (32, 33). This is consistent
with studies of breast epithelial cell proliferation in
primates, which have shown that the combination of
estrogen and progesterone has no effect on breast
epithelial cell proliferation compared with estrogen
alone (34, 35). These studies highlight the fact that the
actions of synthetic progestins can be very different
from those of the native hormone progesterone, and
that classifications of progestins as progesterone- or
androgen-like may not reflect the in vivo actions of
these agents due to their interactions with PR, AR, GR
and potentially other steroid receptors, especially at the
doses used in HRT. For example, MPA acting through
the GR may influence breast cell proliferation by
modulation of the nm-23 tumor suppressor gene ex-
pression (13). Importantly, MPA also binds with high
affinity to the AR (12), and a wide body of literature
indicates that the effects of MPA on androgen signaling
in the breast may have important consequences for
breast cancer risk and response to hormonal therapies.
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Androgen signaling in the breast

There is emerging evidence that the androgen signal-
ing pathway plays a critical protective role in breast
cancer growth (36–39). The primary androgens in
women are testosterone (T) synthesized in the ovaries
and adrenal glands, and androstenedione and dehydro-
epiandrostenedione synthesized primarily in the adre-
nals. For the purposes of this review, we will restrict our
discussion of androgens to T, and its 5�-reduced form
dihydrotestostone (DHT), which has a higher affinity
for binding to the AR. Androgens play key roles in
regulating the functions of vital organs in women,
including the reproductive tract, bone, kidneys and
muscle, and can act indirectly as prohormones of
estradiol or directly by binding to the androgen recep-
tor. While the ovaries produce the majority of serum T,
the bioavailability of circulating androgens is deter-
mined by the serum-binding proteins albumin and sex
steroid hormone-binding globulin (SHBG), which to-
gether bind almost 99% of circulating T. There is a
decline in serum T levels with increasing age, as ovarian
production reduces (40), although tissue levels of an-
drogens are potentially maintained, as both normal
and cancerous breast tissues have the requisite steroid
biosynthetic enzymes to produce androgens and estro-
gens from adrenal precursors (40–42). While little
research has been performed on the role of androgen
action in the normal breast, it is known that androgen
excess (e.g., in congenital adrenal hyperplasia or with
use of anabolic steroids) suppresses breast develop-
ment (reviewed in (40)). Furthermore, mice lacking a
functional AR display defective mammary gland devel-
opment and morphogenesis (43). In formalin-fixed,
paraffin-embedded specimens of normal human mam-
mary gland, our laboratory and others have detected
AR immunoreactivity in the ductal and alveolar epithe-

lial cells of all mammary tissues examined, with little or
no expression of AR detected in the myoepithelium or
stroma (44–47) (Fig. 1). We found AR localization to
be predominantly nuclear; however, nuclear and cyto-
plasmic staining was observed in some tissues (e.g., Fig.
1, Patient B).

Androgen signaling has a protective effect against
breast cancer growth

Androgens have a predominantly inhibitory effect on
the growth of breast cancer cells, both in vitro and in
vivo (48–53). This inhibitory effect is mediated by the
AR and is potentially due to induction of apoptosis (54,
55). Androgens (e.g., fluoxymesterone) historically
have been used as hormonal therapy for advanced
breast cancer, demonstrating an efficacy comparable to
that of tamoxifen (56, 57).

The AR is expressed in �70–90% of primary breast
tumors, a higher frequency than either estrogen (70–
80%) or progesterone (50–70%) receptors, and in 75%
of metastatic breast cancer deposits (44, 58–62). Ex-
pression of AR in breast tumors has been associated
with increased patient survival (39, 63, 64), although a
correlation between AR expression and tumor grade
and stage was not found in another study (65). Levels of
the androgen-regulated kallikreins (kallikreins 2, 3
(prostate-specific antigen, PSA), 6 and 10) in nipple
aspirate fluid have been shown to be lower in women
with breast cancer than in healthy, age-matched women
(66, 67). Increased expression of PSA in breast cancer
specimens and nipple aspirate fluids has been corre-
lated with a low tumor grade, smaller tumors and a
better prognosis (68). Taken together, these studies
indicate that androgen signaling is protective in breast
cancer and that androgen-regulated proteins such as
PSA may be useful prognostic markers (66).

Figure 1. Expression of AR and ER� assessed by
immunohistochemistry in normal breast tissue
from three individuals using hematoxylin and
eosin staining of the breast tissue (A), AR levels
(B), ER� levels (C). Both AR and ER� are
expressed in the ductal epithelial cells but not
in the stroma. AR localization was found to be
predominantly nuclear; however, nuclear and
cytoplasmic staining was occasionally observed
(e.g., Patient B). Original magnification: �200.
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Association of AR and breast cancer risk

The length of a polymorphic glutamine repeat in the
amino terminus of the AR is inversely correlated with
receptor activity. As the AR is predicted to be a protec-
tive factor in breast cancer, it would be expected that
less active AR alleles with longer polyglutamine repeats
would predominate in women with breast cancer. How-
ever, of the numerous epidemiological studies examin-
ing the role of androgen signaling in breast cancer that
measured the length of this repeat, the majority to date
have shown that repeat length is not a significant
modifier of breast cancer risk, age of presentation, or of
tumor phenotype (69–76). Recently, the National Can-
cer Institute Breast and Prostate Cancer Cohort Con-
sortium performed an extensive analysis of AR polyglu-
tamine repeats in 5,603 breast cancer cases and 7,480
controls and found no association between repeat
length and risk of breast cancer in postmenopausal
women (77). Some studies have found women with AR
alleles containing shorter polyglutamine repeat lengths
to be at increased risk of breast cancer (78–81) and
more likely to present with high-grade tumors (82) or
at a younger age (83), whereas others indicated an
association between longer repeat lengths and breast
cancer risk (84, 85). In one study, longer polyglutamine
repeat lengths in the AR were associated with increased
breast cancer risk in a subset of African-American
women who had a first-degree relative with breast
cancer (76). Recently, increased mammographic den-
sity, a known risk factor for breast cancer, was associ-
ated with longer AR polyglutamine repeat lengths in
postmenopausal women who had taken combination
HRT (86). This is in contrast to the earlier Nurses’
Health Study, which did not find a relationship be-
tween repeat length and mammographic density (87).
However, this latter study did not stratify patients
according to their prior hormonal exposure. Another
study has reported that the penetrance of germline
BRCA1 mutations may be influenced by AR polyglu-
tamine repeat length (85); however, this role of the AR
has been disputed by others (70, 71, 75).

While some of the variability in these population-
based studies may be related to technical issues in-
volved in polymorphism genotyping (88), a likely con-
tributing factor to the discrepancies is nonrandom
X-inactivation. Female cells heterozygous at the AR
locus express only one AR allele, and it is the repeat
length of this allele that will be of biological signifi-
cance. Skewing of X-inactivation, involving preferential
silencing of one allele, has been associated with in-
creased risk of breast cancer (84, 89), although this has
not been specifically linked to AR polyglutamine repeat
length. In addition, the influence of polyglutamine
repeat length on AR function, determined by in vitro
analyses (11), is only subtle in the range observed in
most of the female population and may not be a critical
factor in AR function in vivo in some patients.

Interactions between androgen and estrogen signaling
pathways in breast cancer cells

Recent studies suggest that in addition to the direct,
AR-mediated genomic actions of androgens, another
mechanism by which androgens inhibit the growth of
breast cancer cells is to oppose the growth-stimulatory
effects of estrogen-mediated activation of ER�. Andro-
gens decrease expression of ER� mRNA and protein in
breast cancer cells (90), and the AR can inhibit ER� but
not ER� activity, potentially via direct binding of AR to
ER� (91). In vivo studies have demonstrated that
administration of estradiol to ovariectomized rhesus
monkeys induces breast epithelial cell proliferation,
but coadministration of estradiol and testosterone
prevents this increase in proliferation (34). Further-
more, coadministration of testosterone suppresses
the estradiol-mediated induction of MYC, consistent
with the notion that androgens suppress estrogen sig-
naling pathways (34). Thus, the extent that androgens
oppose estrogen signaling in breast tissue may play a
critical role in controlling cellular proliferation and
maintaining tissue homeostasis in the breast. Conven-
tional estrogen treatment regimens, both as oral con-
traceptives and as HRT, may upset the normal estro-
gen/androgen balance and promote unopposed
estrogenic stimulation of mammary epithelial cell pro-
liferation (92). The suppression of gonadotropins by
exogenous estrogen treatment results in a systemic
reduction in ovarian steroidogenesis, resulting in a
lower concentration of circulating T. Moreover, estro-
gens, particularly in oral form, stimulate the hepatic
production of sex hormone-binding globulin (SHBG)
(93), which binds with relatively high affinity to T,
thereby reducing the bioavailability of androgens. The
consequence of these dual effects is that both total and
bioavailable testosterone levels are significantly re-
duced in women taking oral contraceptives or estrogen
replacement for ovarian insufficiency (92). These find-
ings, along with the documented inhibitory effects of
androgens on breast cancer cell growth, have led to
proposals for androgens to be included in combined
HRT preparations in preference to synthetic progestins
(94, 95).

BRCA1 modulates ER� and AR signaling in the
breast

The balance between estrogen and androgen signaling
pathways in breast cells may be further modulated by
the tumor suppressor, BRCA1. Whereas BRCA1 inhibits
both ligand-dependent and -independent transactiva-
tion activity of ER� (96, 97), we and others have
reported that BRCA1 enhances the activity of the AR in
prostate and breast cancer cell lines (98, 99). The
potentiation of AR signaling by BRCA1 occurs predom-
inantly via direct interaction of the two proteins (98,
99). While the in vivo relevance of opposing effects of
BRCA1 on AR and ER� activity is not known, it is
plausible that this action of BRCA1 could accentuate
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the functional consequences of alterations in estrogen/
androgen ratios in breast epithelial cells.

Disruption of AR signaling in the breast by synthetic
progestins

Clinical studies by our laboratory and others have
demonstrated that the response of breast tumors to
high-dose MPA therapy is dependent on expression of
the AR, but not the level of PR (100) and that the
progression-free interval in response to MPA is directly
proportional to the level of AR in the primary tumor
(100, 101). Furthermore, we have recently identified a
correlation between inactivating mutations in the AR
gene in breast tumors and the failure of second-line
MPA therapy (11). Our in vitro analyses have demon-
strated that MPA has a comparably high affinity for the
AR as DHT, and at high doses (100 nM), it can inhibit
the proliferation of AR-positive, but not AR-negative,
breast cancer cell lines (12, 102). AR antagonists can
reverse the inhibitory effects of MPA on the prolifera-
tion of breast cancer cell lines (12, 102), consistent with
a genomic effect of MPA-activated AR on breast cancer
growth.

Crystal structure analysis of the AR has revealed that
the binding of the native ligand, DHT, results in a
distinct conformational arrangement of the ligand
binding domain (LBD), and the formation of a con-
served cleft, termed AF2, which is critical for interac-
tion with accessory proteins that ultimately determine
the program of AR-directed nuclear events (103). It is
clearly evident from our recent studies that MPA, while
able to act through the AR to modulate breast cancer
cell growth, results in the adoption of an atypical LBD
structure distinct from that mediated by DHT (Fig.
2A-D). In particular, the size of MPA forces the displace-
ment of a key amino acid residue, Phe874, such that it
projects abnormally into the AF2 cleft (Fig. 2A–D). It is
therefore likely that DHT and MPA would have diver-

gent effects on AR-regulated gene expression, a hypoth-
esis that has recently been corroborated experimentally
(104).

Data from our and Elizabeth Wilson’s laboratories
suggest that at lower doses (�10 nM), MPA no longer
acts as an AR agonist, but rather disrupts critical aspects
of AR signaling (105). In the presence of a classical
agonist, the transactivation capacity of the AR is medi-
ated primarily by an interaction between the N-termi-
nal transactivation domain and the AF2 cleft in the
C-terminal LBD (depicted in Fig. 3A). This so-called
“N/C interaction” is also dependent on the level of
cellular cofactors that compete for the AF-2 binding
surface in the LBD (106–107). Our data demonstrate
that, at lower concentrations (1–10 nM), MPA is a very
weak inducer of the N/C interaction in its own right
(Fig. 3B), consistent with disruption of AF2 but is a
potent antagonist of DHT-induced N/C interaction
(Fig. 3C). This inhibition by MPA is significantly greater
than that achieved by either progesterone or the spe-
cific AR antagonist hydroxyflutamide (Fig. 3C). The
different molecular alterations in AR structure induced
by low vs. high concentrations of MPA could explain
both the divergent patterns of gene expression ob-
served with the different doses, and also why MPA at
high doses inhibits growth of breast cancer, whereas at
low doses, such as those used in HRT, a greater effect is
seen on breast density consistent with MPA treatment,
resulting in an increased risk of breast cancer.

MPA–AR interaction in the breast

On the basis of current knowledge and our own data,
we have generated a model for AR and ER� signaling in
the normal breast and in breast cancer cells (Fig. 4).
We hypothesize that a balance between these pathways
is critical for the regulation of breast cell growth.
Activation of AR results in AR binding to ER� and
direct inhibition of ER� signaling in breast cells, and

Figure 2. Divergent effects of DHT and MPA on AR structure and AR-mediated gene expression in breast cancer cells.
Molecular model of the AR-LBD bound to DHT (A) and MPA (B). Shown for each is a superimposition of 10 independent
molecular dynamics solutions for the AR-LBD depicting only those residues (in stick form) within 7Å of bound ligand. The shift
from blue to red coloring represents minimal to maximum residue displacement, respectively, from the established crystal
structure. The displacement of Phe874 in the MPA bound AR is clearly evident. Topography of the AR LBD surface in the
vicinity of Phe874 when bound to DHT (C) and MPA (D) is shown. The contribution of Phe874 (shown in stick form) to the
surface is represented by a gold mesh. Displacement of Phe874 by MPA disrupts the well-defined AF-2 cleft observed for the
DHT-bound receptor.
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this inhibition of ER� activity, in turn, suppresses
growth. In addition, activation of AR may influence
breast cell growth independently of ER� signaling,
through direct activation of androgen-regulated genes
or nongenomic mechanisms. The effects of both AR
and ER� signaling may, in turn, be potentiated by the
tumor suppressor protein BRCA1.

Agents such as MPA that perturb the balance be-
tween androgen and estrogen signaling in the normal
breast could result in deleterious tissue-specific effects.
We propose that MPA can act as an endocrine disrup-
tor to negate the protective effects of androgen signal-
ing in the breast (Fig. 4). In addition to its effects

mediated by PR signaling, which may alter breast cell
growth positively or negatively depending on the rela-
tive levels of A and B isoforms of the PR (18); MPA
may exert direct effects on breast cell growth via AR
signaling, or act indirectly through disruption of the
estrogen/androgen signaling balance or by modula-
tion of nonclassically AR-regulated genes such as
BRCA1. The functional consequences of polymor-
phisms in the AR (e.g., polyglutamine repeat length)
or other enzymes involved in steroid hormone bio-
synthesis may ultimately fine-tune the effect of syn-
thetic progestins on the breast at an individual level.
Unfortunately, there are great deficiencies in our
knowledge of the consequences of perturbating the
estrogen/androgen balance in women, and it is our
goal that this review will stimulate wider debate on
this important aspect of a critical women’s health
issue. Moreover, a better understanding of androgen
action in the breast is essential given the increasing
use of androgens in women for sexual dysfunction
and HRT, and that virtually all postmenopausal
women with breast cancer will be treated for at least
5 yr with the new generation aromatase inhibitors in
breast cancer adjuvant therapy.
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Figure 3. Inhibition of DHT-induced AR-N/C interaction by MPA.
A) Schematic representation of the interaction between the amino
and carboxyl-termini of the AR (N/C interaction). B) Induction of an
N/C interaction of the AR by DHT, MPA, progesterone (PRG), or
hydroxyflutamide (OHF), using a mammalian two-hybrid assay. C)
Antagonism of DHT-induced N/C interaction by MPA, progesterone,
and hydroxyflutamide.

Figure 4. Model of interactions between AR, ER-�, and
BRCA1 in breast cells, and potential interactions of the
synthetic progestin, MPA, with these pathways.
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